
Mol Ecol Resour. 2024;24:e13960.	 ﻿	   | 1 of 17
https://doi.org/10.1111/1755-0998.13960

wileyonlinelibrary.com/journal/men

1  |  INTRODUC TION

The use of palaeogenomes for inferring genetic kin relations in 
ancient human populations is growing at an accelerating pace. 
These studies have unraveled diverse types of social relations of 
past human societies, from the composition of households (Ning 
et al., 2021; Yaka et al., 2021) or burial treatment of mass murder 

victims (Schroeder et al., 2019) to matrilineal (Kennett et al., 2017) 
or patrilineal traditions studied in graves (Fowler et  al.,  2022; 
Mittnik et  al.,  2019; Rivollat et  al.,  2023; Sánchez-Quinto 
et  al.,  2019). However, determining the degree of kinship using 
single nucleotide polymorphism (SNP) data from low-coverage 
genomes is fraught with difficulties, mainly arising from data scar-
city. Most published palaeogenomes are below 1× coverage and 
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Abstract
There is growing interest in uncovering genetic kinship patterns in past societies using 
low-coverage palaeogenomes. Here, we benchmark four tools for kinship estimation 
with such data: lcMLkin, NgsRelate, KIN, and READ, which differ in their input, IBD es-
timation methods, and statistical approaches. We used pedigree and ancient genome 
sequence simulations to evaluate these tools when only a limited number (1 to 50 K, 
with minor allele frequency ≥0.01) of shared SNPs are available. The performance of 
all four tools was comparable using ≥20 K SNPs. We found that first-degree related 
pairs can be accurately classified even with 1 K SNPs, with 85% F1 scores using READ 
and 96% using NgsRelate or lcMLkin. Distinguishing third-degree relatives from unre-
lated pairs or second-degree relatives was also possible with high accuracy (F1 > 90%) 
with 5 K SNPs using NgsRelate and lcMLkin, while READ and KIN showed lower suc-
cess (69 and 79% respectively). Meanwhile, noise in population allele frequencies and 
inbreeding (first-cousin mating) led to deviations in kinship coefficients, with different 
sensitivities across tools. We conclude that using multiple tools in parallel might be 
an effective approach to achieve robust estimates on ultra-low-coverage genomes.
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thus do not allow reliable diploid genotyping, required by popular 
kinship estimation tools such as KING (Manichaikul et al., 2010). 
Although imputation has recently been shown to produce reli-
able diploid genotypes using shotgun genomes >0.5× (Martiniano 
et al., 2017; Sousa da Mota et al., 2023), a substantial fraction of 
palaeogenomes still do not reach this threshold; e.g. in the AADR 
repository (v54.1.p1) (Mallick et al., 2024), out of 2041 published 
shotgun genomes with reported coverage from their original 
source, 916 (45%) have coverage <0.5×.

A number of solutions fine-tuned for performance on low-
coverage ancient DNA (aDNA) data have been published over the 
last few years. These algorithms use pseudo-haploid genotypes (e.g. 
Kuhn et al., 2018), genotype likelihoods (e.g. Hanghøj et al., 2019; 
Lipatov et al., 2015; Žegarac et al., 2021) or read information (e.g. 
Popli et al., 2023) instead of diploid calls. These methods also dif-
fer in (a) how they normalize the pairwise mismatch values between 
two genomes to infer the kinship degree and (b) whether they use 
method-of-moment estimators or probabilistic approaches. The 
most widely cited tool, READ (Kuhn et al., 2018), compares the rate 
of average mismatch (P0) between a genome pair with the median 
(or maximum) P0 of a large enough sample from the same popula-
tion, assuming this median estimate represents the expected P0 
of an unrelated pair. This is similar to the pairwise mismatch rate 
(PMR) calculation by Kennett and colleagues (Kennett et al., 2017). 
Two other commonly used tools, lcMLkin (v2) (Lipatov et al., 2015; 
Žegarac et al., 2021) and NgsRelate (v2) (Hanghøj et al., 2019), use 
genotype likelihoods and population allele frequency estimates to 
infer the kinship degree between pairs within a likelihood frame-
work. The TKGWV2 (Fernandes et  al.,  2021) algorithm also uses 
population allele frequencies within a method-of-moments frame-
work. Finally, the recently published method, KIN (Popli et al., 2023), 
uses a likelihood-based framework as well as a Hidden Markov 
Model (HMM) to infer segments of identity-by-descent (IBD) be-
tween pairs of individuals. KIN also uses the average mismatch in 
a sample for normalizing P0 rates for inferring identity-by-descent 
(IBD), akin to READ.

Although each of these methods is being widely used by the 
palaeogenomics community, their relative accuracy and perfor-
mances have not been systematically investigated. One recent 
exception is a study by Marsh et al. (2023), who compared these 
methods using real ancient and modern-day genomic datasets. 
The authors lacked knowledge of real relationships but studied 
how consistency among estimates was affected by downsampling 
high-coverage genomes, reporting that READ, PMR, and TKGWV2 
were less affected by low coverage than lcMLkin and NgsRelate. 
However, this study was limited by the lack of a ground truth set 
of relationships.

Beyond palaeogenomes, inferring genetic relatedness from 
low-coverage genomes can also be a challenge faced by conser-
vation programmes, as well as evolutionary and ecological studies 
of wild populations. Such wildlife studies frequently rely on accu-
rate pedigree information (Galla et al., 2022; Oliehoek et al., 2006; 
Pemberton,  2008), with motivations ranging from minimizing 

inbreeding to investigating heritability patterns. Identifying close 
genetic kin is also relevant for population genomics studies, where 
relatives are removed to ensure independence among samples.

Similar to human studies, relatedness estimation in wildlife sam-
ples has been traditionally performed using microsatellites (STRs), 
which can be powerful and cost-effective (e.g. Godoy et al., 2022; 
Koch et  al.,  2008; Moran et  al.,  2021; O'Reilly & Kozfkay,  2014). 
However, genome-wide SNP data can also be an effective, if not 
more precise, alternative to using STRs in wildlife studies (Galla 
et al., 2020). Importantly, many wildlife genetics studies rely on fecal 
DNA samples, where DNA is usually available in degraded form, 
broken into short fragments and/or in too low amounts to allow re-
liable diploid genotyping for a large number of samples (e.g. Pinho 
et al., 2014). Genome-wide SNP data obtained through either shot-
gun sequencing or capture sequencing may be a useful alternative 
in such cases (Bérénos et al., 2014; de Flamingh et al., 2023; Galla 
et al., 2020). Moreover, many such genomic datasets will be of low 
and heterogeneous coverage, with limited numbers of SNPs per in-
dividual. The relatedness estimation methods discussed in this work 
are therefore directly applicable to such data.

Here, we compare the performances of four algorithms designed 
for kinship estimation with sparse SNP data, lcMLkin, NgsRelate, READ, 
and KIN, using ancient-like genomic data from pedigree simulations to 
distinguish close kin (first- to third-degree relatives) and non-kin. We 
test the effects of ultra-low coverages (using down to 1000 SNPs per 
pair), inbreeding, and noise in allele frequency estimates (i.e. random 
fluctuations around the true allele frequency values that mimic bio-
logical or random technical variation in the real data). We chose READ, 
lcMLkin, and NgsRelate as these are among the most widely used al-
gorithms on low-coverage genomes (Table 1). Meanwhile, we chose 
KIN along with NgsRelate as these algorithms are designed to separate 
genetic correlations due to direct kinship or inbreeding. Importantly, 
READ and KIN use sample-based normalization, while lcMLkin and 
NgsRelate use population allele frequencies to infer IBD.

2  |  MATERIAL S AND METHODS

2.1  |  Pedigree simulations

We simulated ancient genome data representing pairs of individuals 
with known relationships. We first created 600 founder genotype data 
from scratch using 8,677,101 SNPs with minor allele frequency (MAF 
>0.01) from n = 112 Tuscany (TSI) genomes from the 1000 Genomes 
Project v3 (Auton et al., 2015) and randomly creating diploid genotypes 
(Appendix S1). Note that our approach eliminates any background re-
latedness among founders as well as any homozygosity tracts within 
founder genomes; this is not realistic but simplifies the interpretation 
of the kinship estimation results. We repeated the creation of founder 
data 12 times (runs), each producing different sets of founders.

We then employed Ped-sim (v1.3) (Caballero et al., 2019) to sim-
ulate pedigrees using this founder pool, producing genotypes from 
pedigrees of various relationship degrees and types separately, 
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including first-, second and third-degree relatedness without in-
breeding, as well as first-degree and second-degree relatedness with 
first-cousin mating (Figure  1). Within Ped-sim, we used a linearly 
interpolated sex-specific recombination map (Bhérer et  al.,  2017) 
with the ‘-m’ option and crossover interference model (Housworth 
& Stahl, 2003) using the ‘--intf’ option; we also kept track of founder 
sexes (Appendix S1). We thus simulated n = 72 pedigrees composed 
of first-degree, n = 96 second-degree, and n = 96 third-degree related 
pairs. The founders of each pedigree and simulated individuals from 
distinct pedigrees were treated as ‘unrelated’. From these simulated 
pedigrees, we randomly chose n = 48 pairs for each relationship type 
(Table 2) (Appendix S1).

For the pedigree simulations with inbreeding, first-degree and 
second-degree pedigrees (parent–offspring and grandparent–grand-
child relationships) were simulated in the presence of first-cousin 
mating (i.e. the parents of an offspring or a grandchild are first cous-
ins respectively). We also used n = 48 pairs for each relationship type 
(Table 2).

2.2  |  Ancient DNA sequence data simulation and 
pre-processing

To create realistic ancient-like genotypes, we first simulated Illumina 
short read data based on each simulated individual's genotype, with 
aDNA-like postmortem damage and sequencing error introduced 
using the gargammel software (Renaud et al., 2017) (Appendix S1). We 
limited the generated data to randomly chosen 200,000 autosomal 
SNPs. We generated ancient read data with 5× depth of coverage per 
individual, without any present-day human or microbial contamination.

We then processed the gargammel-simulated read data following 
the same procedure as applied to ancient genome sequencing librar-
ies in our group and other research teams (e.g. Altınışık et al., 2022; 
Koptekin et al., 2023; Yaka et al., 2021). First, we removed the adapt-
ers from the simulated ancient reads and then merged the paired 
end reads (Schubert et al., 2016). The reads were then mapped to the 
human reference genome (hs37d5) using the bwa software ‘samse’ 
function (v0.7.15) (Li & Durbin, 2009) with the ‘-aln’ option, and pa-
rameters are set to ‘-l 16,500’, ‘-n 0.01’ and ‘-o 2’. Third, we removed 
the duplicate reads with identical starting and end positions using 
FilterUniqueSAMCons.py script (Kircher, 2012). We also eliminated 
the reads with a minimum of 10% mismatches to the human refer-
ence genome. Finally, the remaining reads were trimmed 10 bps from 
both ends to remove the PMD-related C-to-T and G-to-A substitu-
tions using the bamUtil software with the ‘trimBAM’ option (Jun 
et al., 2015).

2.3  |  Genotyping and downsampling

We randomly downsampled the BAM files of all simulated individuals 
from 5× to 1× coverage using Picard Tools DownsampleSam (2.25.4) 
(Broad Institute, 2019). Because we aim to study the performance TA
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of the kinship coefficient (θ) estimation on low-depth ancient data, 
most of our analyses involve sub-samples of the 1× data (only one 
read per SNP). We used the 5× data only to test noise in population 
allele frequencies.

We next performed pseudo-haploid genotyping (Skoglund 
et al., 2012) from simulated 1× ancient genomes using the SAMtools 
(v.1.9) ‘mpileup’ function (Danecek et  al.,  2021), followed by run-
ning pileupCaller (v1.4.0.5) with the ‘--randomHaploid’ parameter 
(Schiffels,  n.d.). We used the 200 K autosomal SNPs we selected 
earlier to generate text pileup files for all BAM files. Mapping quality 
and base quality filters were set to >30 in SAMtools (v.1.9) mpileup. 
The output pileup files were given as input to pileupCaller software 
to produce pseudo-haploid genotype data by randomly sampling 
one read at each SNP. The output files were then converted to bi-
nary PLINK files using ADMIXTOOLS convertf package (Patterson 
et al., 2012) with parameter ‘-p’ and then to transposed ped/fam for-
mat using PLINK (v1.9) (Purcell et al., 2007). Last, we retained only 
non-missing genotype calls for each pair of individuals using PLINK 
(v1.9) with the option ‘--geno 0’ (note that missing SNPs are removed 
only for the analysed pair). This reduced the number of SNPs from 
200 K to an average of 77 K for 1× depth of coverage.

We randomly chose subsets of 1, 5, 10, 20, and 50 K SNPs shared 
between each simulated pair five times to explore the lower limits 
of using ancient genomes for genetic relatedness estimation. This 
allowed us to study how much kinship coefficient estimates vary de-
pending on the set of variants used for the analysis. We note that 

the term replicate, used for the downstream analysis, refers to this 
repeated downsampling (n = 5).

2.4  |  Simulations with background relatedness

In addition to the primary dataset we generated above using syn-
thetic founders based on 1000 Genomes TSI, we created another 
founder dataset comprising 250 individuals with background re-
latedness (i.e. due to drift). For this, we employed the msprime en-
gine (Baumdicker et al., 2022; Kelleher et al., 2016) in the mode of 
‘HomSap’ from the stdpopsim library (Adrion et al., 2020; Lauterbur 
et  al.,  2023) to simulate the genetic data of these founder indi-
viduals. We utilized the ‘HapMapII-GRCh37’ (Frazer et al., 2007) 
with the ‘-g’ option as the recombination map. We simulated the 
500 haploid genomes descended from the Linearbandkeramik 
(LBK) population, which can be described as early European 
Neolithic populations of Anatolian descent (Kılınç et  al.,  2016), 
of the multi-population model of ancient Eurasia model (Kamm 
et  al.,  2020), with the ‘-d AncientEurasia-9K19 0 500’ option. 
Subsequently, we transformed the succinct tree sequence out-
put generated by the stdpopsim software into VCF using the tskit 
library (Kelleher,  2018) ‘vcf’ command with the ‘--ploidy 2’ op-
tion. We then narrowed our analysis to 200 K randomly selected 
SNP positions through a customized bash script. These selected 
positions were further used to extract reference bases from the 

F I G U R E  1 Primary simulations and analysis workflow. We created 600 synthetic founder genomes using 1000 Genomes Project v3 
Tuscany (TSI) samples. We used these founder genomes to create pedigrees with Ped-sim and human genetic maps, from which we chose 
sets of related pairs of different types, with n = 48 pairs created for each relationship type (two types for first degree and three types each 
for second and third degree) (Table 2). We also created parent–offspring and grandparent–grandchild pairs, where the offspring was the child 
of first cousins. We sub-sampled these genotypes to 200 K SNPs and created aDNA-like sequencing read data using the gargammel tool. 
The reads were then aligned to the reference genome to produce 5× BAM files, which were further downsampled to 1× coverage. We called 
pseudo-haploid genotypes or calculated genotype likelihoods (GL) for the same 200 K SNPs and downsampled these to 1–50 K subsets, 
each SNP counts downsampled randomly five times. The genotypes, GL, or BAM files were input into the four kinship estimation tools.

TA B L E  2 The relationships used for palaeogenomic data simulation.

Relationship Degree Number of sex combinations Number of individuals Number of pairs

Parent–offspring First 4 72 48

Siblings First 3 96 48

Half-siblings Second 6 96 48

Grandparent–grandchild Second 4 72 48

Avuncular Second 8 96 48

First cousins Third 10 96 48

Great-grandparent–great-grandchild Third 8 72 48

Grand avuncular Third 16 96 48

Parent–offspring (inb) First 8 72 48

Grandparent–grandchild (inb) Second 4 72 48

Note: Number of sex combinations: the count of distinct configurations of individuals' sexes within the same pedigree for each simulation run. 
Number of pairs: the number of independently simulated pairs for each type of relationship. ‘inb’: pairs where inbreeding was simulated with the child 
or grandchild being the offspring of a first-cousin mating (Figure 1).
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6 of 17  |     AKTÜRK et al.

human reference genome (hs37d5) using the ‘getfasta’ command 
of BEDtools (v2.27.1) (Quinlan & Hall, 2010). We estimated the 
transition:transversion rate from the 1000 Genomes Dataset v3 
TSI population to assign alternative alleles to the retrieved refer-
ence positions. With this information, we stochastically generated 
alternative alleles for each position in our dataset, employing a 
customized R script. This approach was instrumental in replicating 
genetic variation according to the observed rates within the TSI 
population, offering a realistic distribution of allele frequencies 
within our simulated dataset. The rest of the pipeline, comprising 
pedigree simulation, ancient sequence simulation, pre-processing, 
genotyping, and downsampling, was identical to that used to cre-
ate our primary dataset.

2.5  |  Genetic relatedness estimation using READ, 
NgsRelate, lcMLkin and KIN

2.5.1  |  READ

This non-parametric genetic relatedness estimation tool relies on 
the proportion of mismatching sites between pseudo-haploid ge-
nomes, i.e. the pairwise mismatch rate (P0) (Appendix S1). We ran 
READ with pseudo-haploid genotype data of the simulated indi-
vidual pairs using default parameters. We combined all READ re-
sults for all n = 48 pairs of each eight relationship types into eight 
sets, each combined with unrelated pairs (~2000–4000) from 
different pedigrees of this type (Appendix S1). As these sets are 
mainly composed of unrelated individuals, we used their median 
P0 value for normalization (~0.24). The kinship coefficient (θ) esti-
mate for each related and unrelated pair was calculated using the 
formula:

These θ estimates can be negative when a pair shares fewer al-
leles IBS than the ones of the average unrelated pair (Konovalov & 
Heg, 2008), suggesting a non-kin relationship. Thus, we set the neg-
ative θ estimates to 0.

2.5.2  |  NgsRelate

NgsRelate v2 (Hanghøj et  al.,  2019) (hereon NgsRelate) is a maxi-
mum likelihood-based method estimating Jacquard coefficients (J1, 
J2, …, J9) given genotype likelihoods (GL) and population allele fre-
quencies. To calculate the GLs for each individual separately from 
the gargammel-produced BAM files, we used the ANGSD program 
(Korneliussen et al., 2014) with the ‘--gl 2’ option. We limited GL cal-
culation to the chosen 200 K autosomal SNPs (MAF  > 0.01) using 
the ‘-sites’ parameter. The beagle text output file of ANGSD (--doGlf 
2) was manipulated to generate a GL file containing only two individ-
uals with their shared SNPs. We eliminated pairwise missing SNPs 
by keeping only sites with GL values not equal to 0.33 for three 

genotype states (major/major, major/minor, and minor/minor) for 
both individuals with a custom R script. Next, we randomly down-
sampled the shared SNPs between every pair of individuals to 1–50 
K, five times each, using an in-house bash script. Then, every pair's 
GL files with five different SNP subsets were converted to binary GL 
file format. The background allele frequency files for corresponding 
SNPs were prepared using their MAF of the 1000 Genomes TSI sam-
ple with n = 112 individuals. The MAF threshold of NgsRelate was 
set to 0 with the option ‘-l’. The output file produced by NgsRelate 
for each pair includes a θ value corresponding to the kinship coef-
ficient estimate.

2.5.3  |  NgsRelate with alternative background allele 
frequencies

With NgsRelate, we also conducted trials with alternative back-
ground MAF. This analysis was restricted to the two first-degree re-
latedness categories, parent–offspring (n = 48) and siblings (n = 48); 
we reasoned these effects would be consistent across different 
relatedness types. We ran the ANGSD program with the above-
mentioned parameters on the BAM files using chosen 200 K au-
tosomal SNPs on the BAM files and we processed the resulting GL 
file to obtain pairwise GL files without missing SNPs. We then used 
three alternative background MAF calculations: (1a) MAFs from the 
1000 Genomes TSI population (n = 112) as in the original analyses. 
(1b) MAFs calculated from gargammel-produced 5× coverage BAM 
files of the same individuals used in this analysis: 72 individuals 
comprising the 48 parent–offspring and 96 individuals comprising 
the 48 sibling pairs. For this, we ran the ANGSD program with the 
same parameters on the 5× coverage BAMs and obtained MAFs 
for both relatedness categories separately. (1c) MAFs estimated 
from gargammel-produced 1× coverage BAM files of the same 
individuals.

We also used modified MAFs in three ways: (2a) No noise. (2b) 
Adding a low level of random noise (i.e. random variation). Here, 
we introduced random noise to the original MAFs from the TSI, as 
well as MAFs called from 1× and 5× genomes (as described earlier), 
while ensuring the resulting values remained within the valid range 
of 0 to 0.5. For this, we first transformed the MAF values with the 
logit function logit(p) = log(p∕(1 − p)). This transformation aims 
to stretch the original allele frequencies to the entire real num-
ber space, making them amenable to adding random noise. Then, 
we generated the noise-added allele frequency values following a 
Gaussian distribution with a mean based on the logit-transformed 
MAF values and a standard deviation of 0.5. Then, we applied the 
expit function, expit(p) = 1∕(1 + exp ( − p) ), to the random values to 
transform them back to the 0 to 1 interval. Finally, we adjusted the 
MAF values to ensure they fell within the valid range of 0 to 0.5. 
This adjustment involved subtracting any values that exceeded 0.5 
from 1. (2c) Adding a high level of random noise. Here, we repeated 
the same steps as in (2b) but added Gaussian noise with a standard 
deviation of 1.

� = 1 −
(
P0pair ∕P0median

)
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    |  7 of 17AKTÜRK et al.

We manipulated the resulting GL and MAF files for each pair 
to have five replicates of 1, 5, 10, 20, and 50 K shared autosomal 
SNPs between pairs of samples. We then ran NgsRelate with the 
parameters described earlier for each pair of parent–offspring and 
sibling categories with these nine different background MAF values 
(Table 3).

2.5.4  |  lcMLkin

lcMLkin (Lipatov et al., 2015) is another maximum-likelihood-based 
software detecting genetic relatedness. Unlike NgsRelate, it assumes 
a non-inbred population and estimates Cotterman coefficients using 
GL and population allele frequencies. We prepared input VCF files 
for each pair to run lcMLkin (v2.1) (Altınışık, 2023) implemented for 
Python3. We used BCFtools mpileup and call commands (Li, 2011) 
to estimate the genotype likelihoods of each individual using BAM 
files for the 200 K SNP set with the mapping and base quality fil-
ter parameters ‘-q10’ and ‘-Q13’, respectively. These thresholds 
were selected based on the default filters of ANGSD to estimate 
GLs for NgsRelate analysis. lcMLkin requires the genotype data of 
the selected background population for allele frequency estimation. 
These genotype data were provided in PLINK format (bed/bim/fam) 
with the argument ‘-p’. We prepared these genotype data using the 
200 K selected autosomal SNPs (MAF >0.01). We changed the de-
fault allele frequency thresholds integrated into the lcMLkin python 
script from minimum 0.05 and maximum 0.95 to minimum 0.01 and 
maximum 0.99. We filtered out missing (non-shared) SNPs from VCF 
files using an in-house bash script to collect only overlapping SNPs 
between each simulated pair. After that, we randomly selected 1, 

5, 10, 20, and 50 K shared SNPs between pairs of samples, inde-
pendently five times each, and generated downsampled VCF files 
using BCFtools view (Li, 2011) with the ‘-R’ parameter. As the link-
age disequilibrium (LD) pruning application of lcMLkin removes 
closely linked SNPs from the relatedness analysis, we modified the 
program script such that downsampled SNPs are not pruned by LD. 
This was done for simplicity to ensure we use the same number of 
SNPs in each trial and across different software. Also, with ≤50 K 
SNPs across the genome, the linkage between neighboring SNPs will 
be minimal. The relatedness coefficient (r) is represented with the 
‘PI_HAT’ estimate in the output files of lcMLkin. We calculated the 
kinship coefficient value as � = r ∕2.

2.5.5 | KIN

KIN (Popli et  al.,  2023) has been recently developed to estimate 
relatedness up to the third degree and differentiate between par-
ent–offspring and sibling pairs using Hidden Markov Models (HMM). 
The algorithm uses P0 estimates (like READ) in genomic windows 
calculated directly from BAM files, and further estimates possible 
ROH and IBD tracks using HMM (Appendix S1). As KIN does not run 
with only two individuals and because we wanted to test one pair 
at a time to control for the shared SNP counts between individu-
als, we first grouped our BAM files into triplets for each relationship 
type, including one pair of BAM files to be analysed and one BAM 
file of a randomly chosen simulated individual. We determined the 
read depth of each site at the predefined 200 K SNPs for each triplet 
using SAMtools (v1.9) (Danecek et al., 2021) ‘depth’ with the ‘-q 30' 
and '-Q 30’ options. Then, we removed sites that do not contain at 

TA B L E  3 The overview of the datasets utilized, MAF sources incorporated, pedigree types employed, and the corresponding SNP counts 
investigated for kinship estimation performance across the four tools evaluated in this study.

Software

Dataset with or 
w/o background 
relatedness

Pedigree type (w/o 
inbreeding)

MAF 
source Noise application

No. of SNPs inspected

1 K 5 K 10 K 20 K 50 K

READ w/o All NA NA √ √ √ √ √

With Parent-offspring and siblings NA NA √ X X √ X

NgsRelate v2 w/o All TSI Without noise √ √ √ √ √

w/o Parent-offspring and siblings TSI With noise (SD = 0.5) √ √ √ √ √

w/o Parent-offspring and siblings TSI With noise (SD = 1) √ √ √ √ √

w/o Parent-offspring and siblings 1× BAMs Without noise √ √ √ √ √

w/o Parent-offspring and siblings 1× BAMs With noise (SD = 0.5) √ √ √ √ √

w/o Parent-offspring and siblings 1× BAMs With noise (SD = 1) √ √ √ √ √

w/o Parent-offspring and siblings 5× BAMs Without noise √ √ √ √ √

w/o Parent-offspring and siblings 5× BAMs With noise (SD = 0.5) √ √ √ √ √

w/o Parent-offspring and siblings 5× BAMs With noise (SD = 1) √ √ √ √ √

With Parent-offspring and siblings TSI None √ X X √ X

lcMLkin v2 w/o All TSI None √ √ √ √ √

KIN w/o All NA NA X √ √ √ √

Note: The pedigrees with inbreeding are not shown. NA denotes tools that do not use MAF information. None denotes tools without the application 
of noise, though they employ MAF information.

 17550998, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13960 by O

rta D
ogu T

eknik U
niversitesi, W

iley O
nline L

ibrary on [26/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 17  |     AKTÜRK et al.

least one read shared between a pair of individuals using a custom 
bash script.

We randomly downsampled the remaining sites to 1, 5, 10, 20, 
and 50 K, independently five times each, for each pair and gave 
these downsampled SNP lists as input with the ‘--bed’ argument 
to run the KINgaroo algorithm, a python package to generate ROH 
estimates and input files for KIN. We ran KINgaroo with default 
parameters without contamination correction (using the ‘--cnt 0’ 
option) and without indexing and sorting of BAM files (using the 
‘--s 0’ option) for each triplet separately 25 times (n = 5 SNP counts 
× n = 5 replicates).

We separately collected pairwise mismatch values (P0) of pairs 
for each relationship type (found in ‘p_all.csv’ file under the ‘hmm_
parameters’ directory created by KINgaroo) and calculated their me-
dian P0 values for each SNP count and replicate, corresponding to 
a P0 value of an average unrelated pair. To apply normalization for 
kinship estimation with these median values (~0.24), we manually 
changed the text files of P0, ‘p_0.txt’ created by KINgaroo under 
the ‘hmm_parameters’ directory. We then ran KIN with input files 
separately for each triplet using default parameters. The KIN output 
file includes the Jacquard coefficients (k0, k1, and k2) for each pair an-
alysed. We calculated the kinship coefficient using these estimates 
as � =

(
k1 ∕4 + k2 ∕2

)
.

We note that KIN gave sporadic errors when analysing pairs with 
1 K SNPs and when using data from grandparent–grandchild pairs 
under first-cousin mating (Appendix S1).

2.6  |  Classification of kinship coefficient estimates

We categorized each simulated pair into one of four relationship cat-
egories, i.e. first-, second-, third-degree related or unrelated, using 
their θ estimates. Here, we used two assessment criteria. The first 
criterion was the arithmetic mean (average) of the theoretical kinship 
coefficient values. The arithmetic mean of two expected values θ1 
and θ2 would be 

(
�1 + �2

)
∕2, i.e. the mid-point of expected kinship 

coefficient values of two relatedness degrees (Table S6). READ and 
TKGWV2 also use this mid-point cut-off approach. The alternative 
criterion we explored was the geometric mean. The geometric mean 
of two expected values θ1 and θ2 would be 

√
�1 × �2  , which is always 

smaller than the arithmetic mean. As θ values decrease with lower 
degrees of relatedness in a non-linear fashion (see Figures S1–S4), we 
asked if using the geometric mean may improve the accuracy of relat-
edness type classification. The cut-offs used are shown in Table S6. 
As zero values cannot be tolerated while calculating the geometric 
mean, we applied a modified geometric mean for third-degree cut-off 
using the splicejam (v0.0.63.900) package in R (Ward, 2023).

2.7  |  Classification and accuracy

We created a confusion matrix using either the arithmetic or 
geometric mean criteria for each relationship type. We used 

the ‘confusionMatrix’ function of the R caret (v3.5) package 
(Kuhn, 2008). To maintain the balance between classes in confusion 
matrix calculation, we randomly selected only 96 second- and third-
degree related and unrelated pairs using the ‘sample’ function of R 
without replacement. We used the same number of each relation-
ship type for second and third-degree pairs (n = 32 each). After that, 
we prepared four different datasets for the tools, consisting of clas-
sified estimates based on either the arithmetic or geometric mean 
and their actual classes.

The classification metrics we used were the true positive rate 
(TPR), true negative rate (TNR), false positive rate (FPR), false neg-
ative rate (FNR), precision, and the F score (F1). To understand how 
often the four software correctly identified genetic relatedness, we 
also determined the relative frequency of both true and false pre-
dictions for each class and SNP count. Additionally, we categorized 
false predictions according to their inferred classes.

2.8  |  Statistical tests on kinship 
coefficient estimates

2.8.1  |  Linear mixed effect model

We used a linear mixed effect model to study the effect of software 
choice and SNP count on θ estimates for each relationship type. The 
fixed effects were (a) the type of genetic relatedness estimation 
tools we used, i.e. READ, NgsRelate, KIN, and lcMLkin, and (b) SNP 
counts shared between simulated individuals (5, 10, 20, and 50 K). 
The pair of individuals was included as a random effect.

We used the ‘lmer’ function in the R lmerTest package (Bates 
et  al.,  2015) with the R code: Imer(θ ~ Software + SNPCount + 
(1| pairs)). We repeated the analysis with the estimates for each rela-
tionship type separately. We used the R base function ‘summary’ on 
the lmer object to visualize p values of pairwise mean θ difference 
among software and SNP counts, using lcMLkin and 50 K SNPs as 
the baseline. To ensure data independence, if multiple pairs included 
the same individual (which happened among parent–offspring, 
grandparent–grandchild, and great-grandparent–great-grandchild 
pairs), we chose only one of the pairs. In this way, we kept only 24 
pairs for these three relatedness types.

We further tested the effect of software and shared SNP 
counts on θ estimates using repeated measures ANOVA with the 
‘aov’ function in R (R Core Team,  2022). We integrated the pair 
of individuals as an error term to represent individual differences 
while identifying within-group variabilities. We repeated the analy-
sis with the θ estimates for each relationship type, SNP count, and 
replicate separately. As mentioned earlier, we chose only one of the 
pairs from parent–offspring, grandparent–grandchild, and great-
grandparent–great-grandchild pairs to maintain data independence. 
We thus kept only 24 pairs for these three relatedness types.

Additionally, we applied the same linear mixed effect model 
using as a response variable the absolute residuals, i.e. the absolute 
differences between the θ estimate of a pair and theoretical θ value, 

 17550998, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13960 by O

rta D
ogu T

eknik U
niversitesi, W

iley O
nline L

ibrary on [26/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  9 of 17AKTÜRK et al.

AMD = ∣ �expected − � ∣. This way, we investigated the possible devi-
ations from the theoretical values while accounting for the variance 
between pairs.

2.8.2  |  Levene's test

We performed the Levene's test to explore the homogeneity 
of variances between the kinship coefficient estimates of the 
tools using the ‘leveneTest’ function in the R car package (Fox 
& Weisberg,  2011). We first divided the estimates from READ, 
NgsRelate, lcMLkin, and KIN into groups based on SNP counts and 
replicates. Then, we applied Levene's test separately to each group.

3  |  RESULTS

3.1  |  Similar performance among tools at ≥20 K 
SNPs

We studied the performance of lcMLkin, NgsRelate, READ, and KIN 
on genomic data from simulated first- to third-degree relatives and 
unrelated pairs using various shared SNP numbers from 1 to 50 K, 
without background relatedness or inbreeding (Section 2). θ distri-
butions across all studied pairs and replicates (Figures S1–S4), the 
mean θ estimates (Figure 2), as well as correct kinship degree assign-
ment rates (Figure 3) were similar among the four tools using down-
sampled sets of either 50 or 20 K SNPs. The variance in θ tended to 
be negatively correlated with the SNP count, and in the analyses of 
first-degree pairs, all θ estimates had higher variance between sib-
lings than between parent–offspring.

We found that identifying first-degree relatives is possible 
with ≥5 K SNPs with all four tools using this dataset with high 
reliability (≥97.5% correct assignment). Even with 1 K SNPs, READ 
could assign first-degree pairs correctly with a frequency of 85%, 
and NgsRelate and lcMLkin at a frequency of >96% (Figure  3). 
NgsRelate and lcMLkin achieved acceptable performance levels 
with as few as 1 K SNPs for distinguishing between second- ver-
sus third-degree kin and third-degree kin versus unrelated pairs 
(Figure  3). In contrast, READ and KIN required ≥10 K SNPs to 
achieve >80% correct assignment for these classes.

3.2  |  Bias and variation in θ  estimates among the 
four tools

We found that θ estimates from all tools display slight biases, but their 
level and directions depend on the relationship type and tool. One 
consistent trend was underestimating θ in first-degree relationships 
and grandparent–grandchild pairs and overestimating θ among unre-
lated pairs (Figure 2). We tested the effect of software choice and SNP 
count on θ estimates with a linear mixed effect model (Table S1) and 
with repeated measures ANOVA separately for different SNP counts 
(Table S2), which supported the observation of slight but significant 

differences in estimation among tools, especially in third-degree rela-
tionship types. We further compared the absolute mean differences 
between observed and expected θ (residuals) with the same linear 
mixed effect approach. Testing all eight kinship types separately, and 
for each type, at least one pair of software showed significant differ-
ences in the magnitude of residuals (at t-test p < .05) (Table S3).

We next studied whether variance among θ estimates (as op-
posed to bias) significantly differs among tools. We ran Levene's 
test for variance differences, comparing estimates among the four 
tools for each relatedness type and SNP count separately (Table S4). 
This revealed significant differences in θ variances among the tools, 
especially with ≤10 K SNPs (72/90 of comparisons with p < .05), 
which is consistent with their variable classification performance 
at low SNP counts (Figure 3). The only exceptions were grandpar-
ent–grandchild and great-grandparent–great-grandchild pairs, for 
which variances were similar among tools.

3.3  |  Higher classification accuracy with 
NgsRelate and lcMLkin than other tools

Next, we calculated standard accuracy metrics to represent the four 
tools' classification performances (Figure 4). All tools had high (>98%) 
F1 accuracy values for first-degree relatives down to 5 K SNPs. Even 
using 1 K SNPs, READ had F1 86%, while NgsRelate and lcMLkin had 
F1 96% (Table S5). For second-degree relatives at 5 K SNPs, lcMLkin 
and NgsRelate had F1 values of 93 and 94%, respectively, while READ 
F1 was only 83% and that of KIN was 88%, similar to values reported 
by Popli and colleagues (Popli et al., 2023). We found similarly com-
promised assignments for third-degree related pairs using READ and 
KIN at 5 K SNPs (69–79%) compared to lcMLkin and NgsRelate (91–
93%). We also note that second- and third-degree relative estimations 
never reached 100% accuracy, even at 50 K SNPs.

3.4  |  Using geometric versus arithmetic 
mean thresholds

Because θ and kinship degrees are not linearly correlated (e.g. see 
Figure S1), we asked if the geometric mean may provide a more suit-
able threshold (Section 2). We ran the classification of the same pairs 
using the same θ estimates from all four tools using the geometric 
mean as the threshold. We found slightly higher true positive rates 
using the geometric mean over the arithmetic mean for all categories 
except third-degree relatives (Figure  S5). Overall, the differences 
between the thresholds appear too modest to entail a change in as-
signment strategy.

3.5  |  Noise in population allele frequency leads to 
over- or underestimation of θ

Higher Gaussian noise in background allele frequencies led 
to systematic overestimation of θ (>0.25) for all 96 pairs that 
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10 of 17  |     AKTÜRK et al.

we analysed (48 siblings and 48 parent–offspring pairs) using 
NgsRelate (Figure 5a,b and Figures S7, S8). However, noise related 
to imprecise minor allele frequency estimation led to a slight but 
systematic underestimation of θ, with 95% of parent–offspring 
pair comparisons (n = 48 pairs × n = 5 SNP counts × n = 5 repli-
cates) with θ < 0.25 and 76% sibling pair comparisons with θ < 0.25 
(Figure 5a,b and Figures S7, S8). Indeed, the underestimation trend 
was mitigated when using allele frequencies estimated from 5× 
genomes instead (Figure 5a,b and Figures S7, S8).

3.6  |  Background relatedness has a limited effect 
on kinship estimates

We studied the performance of READ and NgsRelate on genomes 
with background relatedness due to genetic drift, produced using 

population genetic simulations (Section  2). We found READ θ es-
timates were practically the same when genomes contained back-
ground relatedness compared to when they did not. Meanwhile, 
NgsRelate tended to underestimate θ with these genomes, albeit 
minimally (<0.025) (Figure 5c).

3.7  |  The effect of inbreeding on θ  estimates

Inbreeding, either through consanguinity or through small popula-
tion size, can create distal IBD loops between pairs of individuals 
and elevate θ estimates beyond that expected from the proximal 
relationship (Figure 1). We tested the four tools first using parent–
offspring simulations, where the parents of the offspring were the 
first cousins. Average θ values from READ, lcMLkin, and NgsRelate 
were 0.27–0.28, as expected (Figure  6a and Figure  S9). KIN 

F I G U R E  2 The mean θ estimates across different tools and SNP counts for (a) first-degree pairs, (b) second-degree pairs, (c) third-degree 
pairs, and (d) unrelated pairs, using all pairs (n = 48) and replicates (n = 5 per pair). Results for each overlapping SNP count are described with 
distinctive colours. The points show the mean and the vertical lines show ± 1 standard error, estimated using all pairs (n = 48) and replicates 
(n = 5 per pair). The red dashed line represents the theoretical θ value for the corresponding relatedness degree. The results reveal variable 
levels of bias, which are not necessarily correlated with SNP counts.
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    |  11 of 17AKTÜRK et al.

estimates were all 0.25 (except for a single pair using 50 K SNPs). For 
NgsRelate, we also calculated a modified θ version, �̂ = J7 ∕2 + J8 ∕4, 
which is expected to reflect proximal IBD sharing without IBD due to 
distal loops. These ̂� estimates were slightly but systematically lower 
than what would be expected from proximal loops (~0.24 using ≥5 
K SNPs).

For grandparent–grandchild pairs, with the grandchild being 
the offspring of first cousins, READ, lcMLkin, and NgsRelate θ val-
ues were higher than expected from proximal loops (Figure 6b and 
Figure S10). This time, NgsRelate �̂ values were also overestimated, 
but at a lower degree than the earlier three θ estimates. KIN did not 
perform with this dataset.

NgsRelate also estimates the individual inbreeding coefficient, F. 
This should be 0.0625 for first-cousin mating. The NgsRelate mean 
F estimates for the child were 0.075 for 1 K SNPs, but 0.051–0.055 

for ≥5 K SNPs in the parent–offspring dataset; likewise, mean F was 
0.068 for 1 K SNPs, but 0.041–0.048 for ≥5 K SNPs in the grandpar-
ent–grandchild dataset, suggesting that NgsRelate tends to over- or 
underestimate F in different settings.

4  |  DISCUSSION

Our benchmarking using simulated genomes revealed a number of 
interesting observations on the four tools tested on sparse and low-
coverage SNP data. First, all four tools, lcMLkin, NgsRelate, KIN and 
READ, perform well and are consistent with each other down to 20 
K shared SNPs, even in separating third-degree and unrelated pairs 
(Figure 3). This SNP count lower limit corresponds to two genomes, 
each with ~0.1× coverage genotyped on a ~1 million SNP panel 

F I G U R E  3 The relative frequency of pairs assigned to first-, second-, and third-degree related and unrelated categories by lcMLkin, 
NgsRelate, KIN, and READ. The kinship coefficient estimates from these tools were classified using the arithmetic mean of theoretical 
kinship coefficients. Colours refer to the assigned relatedness degree. The frequencies of pairs assigned to each category are indicated as 
percentages inside the bars (only for categories with frequency >5%). The results indicate similar performance of all tools at and above 20 K 
SNPs and better performances of lcMLkin and NgsRelate at low SNP counts.
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(Mallick et al., 2024); Mathieson et al., 2015), or each with ~0.06× 
genotyped on the 1000 Genomes v3 Africa diversity panel of ~5 mil-
lion SNPs (Koptekin et al., 2023). Theoretically, this lower limit also 
applies to comparisons between a 1× genome and a 0.004× genome, 
using a 5 million SNP panel.

The variance in θ between replicates exhibited a negative cor-
relation with SNP count (Figure 2 and Figures S1–S4), attributable to 
stochastic noise. As expected, θ estimates also displayed higher vari-
ance between siblings compared to parent–offspring pairs (Figure 2 
and Figure S1), as IBD between siblings varies across the genome 
due to the randomness of recombination.

We also observed a number of systematic differences in perfor-
mance among the tools. READ generally performs worse than the 
other three tools with these data in terms of higher variance in θ 
estimates and, hence, lower assignment accuracy (Figures 2 and 3 
and Figures S1–S4). Meanwhile, KIN θ distributions have lower vari-
ance than the other tools but not improved accuracy, with higher 
degrees of misassignment than lcMLkin and NgsRelate (Figure  3). 
For instance, using 5 K SNPs, the correct assignment of first-degree 
relatives was 99.6% for both lcMLkin and NgsRelate, compared to 
98.5% for KIN and 97.5% for READ. For third-degree relatives, using 
again 5 K SNPs, correct assignment rates were 91.5% for lcMLkin 
and 89.6% for NgsRelate, in contrast to 75.2% for KIN and 66.7% for 
READ. This difference may be expected, as lcMLkin and NgsRelate 
use more information (population allele frequencies per site) to nor-
malize genomic mismatch rates.

Our comparisons of variance in θ estimates across tools using 
Levene's test also supported the earlier observations. We found 
significant differences among tools for nearly all relationship types 
below 10 K SNPs. Interestingly, grandparent–grandchild and great-
grandparent–great-grandchild pairs were an exception to this pat-
tern, such that all tools had comparable variances (Table  S4). This 
observation may be attributed to fewer recombination events in 
these two kinship types (Qiao et al., 2021).

Beyond variance in θ estimates, average θ estimates were gen-
erally close to expected values under most conditions (Figure 2). 
Nevertheless, slight shifts from expected values can be noticed in 
Figures S1–S4 and Figure 2. The tools underestimated θ in first-
degree relationships and grandparent–grandchild pairs but over-
estimated θ among unrelated pairs. Further, KIN diverged from the 
other tools in displaying the strongest downward bias for related 
pairs but the least upward bias for unrelated pairs. Except for 
KIN estimates, the observed biases were not strongly correlated 
with SNP counts. NgsRelate and lcMLkin appeared overall least 
biased, but not for all kinship types; e.g. for great-grandparent–
great-grandchild pairs, READ estimates were closest to expecta-
tion. To summarize, we observed slight biases in the θ estimates by 
all tools, yet the magnitude and tendencies of these biases varied 
based on the type of relationship and the specific tool employed 
(Figure 2 and Table S1).

Similar trends emerged when analysing absolute mean differ-
ences from expectation (residuals) via a linear mixed effect model. 

F I G U R E  4 Classification performance of the four tools using the primary dataset. FPR, false positive rate; FNR, false negative rate; 
TPR, true positive rate; TNR, true negative rate and F1, accuracy. The classification was performed using n = 48 pairs x 5 replicates for each 
kinship type (n = 96 for first-, n = 96 for second-, and n = 96 for third-degree related and n = 96 for unrelated), generated using the primary 
dataset (no inbreeding, perfect background allele frequencies, and no background relatedness) and using the arithmetic mean to classify 
kinship coefficient estimates. Note that we randomly sub-sampled n = 96 pairs for second- and third-degree related categories with each 
relationship type represented equally (n = 32) to ensure balance. The colours represent the count of SNPs shared between individuals.
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    |  13 of 17AKTÜRK et al.

F I G U R E  5 The effects of background allele frequency noise and background relatedness on θ estimations. (a) Parent–offspring and 
(b) sibling θ distributions under noise in allele frequencies, calculated using NgsRelate using n = 48 pairs each, and 1 and 20 K SNPs. ‘MAF 
without noise’ indicates TSI allele frequencies (perfect information) or MAF from 5× and 1× genomes; ‘MAF with noise (SD = 0.5)’ and ‘MAF 
with noise (SD = 1)’ indicate cases where random Gaussian noise is added to allele frequencies; ‘MAF from 5× genomes’ and ‘MAF from 
1× genomes’ indicate MAF called using genomes of the indicated coverage (Section 2). (c) Parent–offspring θ distributions without or with 
background relatedness using NgsRelate and READ. The points show the mean (n = 48 pairs × n = 5 replicates) and the vertical lines show 
± one standard error (not visible in panels a and b) for 1 and 20 K SNPs. ‘Without background relatedness’: the main simulations where 
synthetic founders were created without background relatedness. ‘With background relatedness’: simulations where we produced founders 
using a coalescent simulator and realistic demographic model. The results indicate that Gaussian noise versus noise caused by imprecise 
population allele frequency estimates have opposing effects on θ estimates.

F I G U R E  6 The mean θ estimates across different tools and SNP counts for (a) parent–offspring pairs (first-cousin mating) and (b) 
grandparent–grandchild pairs (first-cousin mating). Results for each overlapping SNP count are described with distinctive colours. The points 
show the mean and the vertical lines show ± 1 standard error, estimated using all pairs (n = 48) and replicates (n = 5 per pair). The kinship 
coefficient from NgsRelate (�̂) was calculated ignoring the inbreeding-related Jacquard coefficients. The red dashed line represents the 
theoretical kinship coefficient value for the corresponding relatedness degree.
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Across all eight kinship types examined individually, significant dif-
ferences in residual magnitudes were detected between at least one 
pair of software (t-test p < .05) (Table S3). These trends, though, ap-
pear to have limited impact on classification accuracy: e.g. for sib-
lings, NgsRelate displays the strongest downward bias in average θ 
estimates, but its classification accuracy is higher than both READ 
and KIN and is on a par with lcMLkin (Figure 3). As expected, SNP 
count also significantly affected residuals (i.e. variance), with larger 
residuals at lower SNP counts (Table S3).

When evaluating standard accuracy metrics (Figure 4), we found 
that all tools achieved high F1 accuracy values for first-degree rela-
tionships, even with as few as 5 K SNPs. However, NgsRelate and 
lcMLkin consistently outperformed READ and KIN for relationships 
beyond the first degree, particularly at lower SNP counts (Table S5). 
This trend aligns with the observed higher variation in READ θ esti-
mates and downward bias in KIN θ estimates.

As discussed earlier, READ and KIN display lower performance 
at low SNP counts than lcMLkin and NgsRelate. READ and KIN use 
the median mismatch rate in a sample of pairs for normalization, 
whereas lcMLkin and NgsRelate use population allele frequency 
estimates. We reasoned that using perfect knowledge of allele fre-
quencies (frequencies used to create the founders) in our analysis 
may have favoured the performance of lcMLkin and NgsRelate. 
Indeed, Lipatov et al. (2015) tested imperfect allele frequencies by 
using the Balding–Nichols model with various FST values (0.01, 0.05, 
and 0.1) at each SNP and observed overestimation of θ with increas-
ing FST. Hence, we repeated NgsRelate with imperfect population 
allele frequencies in a subset of our data. Consistent with Lipatov 
et  al.  (2015), we found that higher random Gaussian noise led to 
systematic overestimation of θ, which arises because inaccurate 
background allele frequencies inflate the impact of being identical-
by-state (IBS) between any pair.

We then introduced another type of noise, imprecise minor al-
lele frequencies, when running NgsRelate. Intriguingly, this led to 
an underestimation of θ for the majority of parent–offspring and 
sibling pairs (Figure 5). The reason for this underestimation trend 
could be related to the lower representation of relatively rare 
variants when estimating allele frequencies from low-coverage 
genomes (Figure S6). Overall, these results suggest that different 
sources of noise in population allele frequency estimates can com-
promise the performance of lcMLkin and NgsRelate. This would 
also be consistent with the results by Marsh et al. (2023), who re-
ported low performance of the latter two tools on real genomic 
datasets.

We further asked if background relatedness among the found-
ers, which would arise due to drift, may cause a shift in θ estimates. 
At least in our simulated scenario of European Neolithic ancestry 
with an effective population size of 250, the presence of background 
relatedness among founders did not substantially influence the ac-
curacy or reliability of θ estimates produced by READ and NgsRelate 
using either 1 K or 20 K SNP sets (Figure 5c).

We mark that these results reflect the upper bounds of perfor-
mance in real datasets for a number of reasons:

a.	 Most of our lcMLkin and NgsRelate analyses presented used per-
fect information on background allele frequencies, which may be 
slightly or highly unrealistic in real settings, depending on the 
dataset.

b.	 Our sets of sample pairs used for normalizing mismatch rates, 
used by READ and KIN, do not include population structure. 
Heterogeneous ancestries in a sample can lead to overestimation 
of θ, as pointed out by Popli and colleagues (Popli et al., 2023).

c.	 Our primary genome simulation dataset lacks background relat-
edness among the founders, which would be present at variable 
degrees in real data and could confound estimates of proximal 
IBD. This involves results from all four tools. Our experiment 
with founders obtained from a realistic demographic model did 
not create a major shift in θ estimates. Still, we note that the ef-
fect depends on the effective population size, so that in bottle-
necked populations θ estimates might be affected.

d.	 We did not include identical genomes or fourth-degree or more 
distant kin in the simulations. The presence of more variable 
classes would increase the chance of misidentification and would 
lower classification accuracy overall.

In our primary simulations, NgsRelate and lcMLkin were found 
to be more accurate than READ and KIN, with lower false positive 
and false negative rates, especially when using <20 K shared SNPs 
(Figure  3 and 4). The former tools both use genotype likelihoods 
and population allele frequencies. However, as our trials with noise-
added or imperfectly estimated population allele frequencies reveal, 
this performance might be compromised in real-life applications. 
In fact, in our own experience, READ results appear highly robust 
and reproducible compared to those of other tools (e.g. Altınışık 
et al., 2022; Yaka et al., 2021).

Among the tools tested, KIN performs the most sophisticated 
estimation, which includes inference of both ROH and shared IBD 
segments using HMMs, calculating likelihoods for kinship degree 
assignment, and classifying parent–offspring and sibling pairs (we 
note that the recently released READv2 also distinguishes parent–
offspring and siblings; Alaçamlı et al., 2024). KIN also differed from 
the other tools in estimating all simulated parent–offspring pairs' 
kinship coefficients as precisely as 0.25 due to the authors having 
constrained the parameter optimization space for this relationship 
type (Popli et al., 2023). However, the accuracy of KIN was not gen-
erally much superior to that of READ. We also note that we failed 
to run KIN on 1 K SNP datasets (due to sporadic errors likely due to 
convergence issues) and on one dataset that included inbreeding.

Marsh and colleagues (Marsh et al., 2023) recently tested the 
performance of kinship estimation software, including READ, 
NgsRelate, and lcMLkin (as well as TKGWV2 and PMR calcula-
tion), and using real high-coverage ancient human genomes from 
three different publications. Assuming the relatedness degree 
identified by the tools on the original high-coverage genomes as 
ground truth, they studied kinship estimates using downsampled 
versions of the same genomes (0.02×–2.1×). Interestingly, the au-
thors found that the performance of genotype likelihood-based 

 17550998, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13960 by O

rta D
ogu T

eknik U
niversitesi, W

iley O
nline L

ibrary on [26/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  15 of 17AKTÜRK et al.

methods (NgsRelate and lcMLkin) dropped starkly as the false neg-
ative rate increased. In contrast, the performances by READ, PMR, 
and TKGWV2 were relatively robust to low coverages. The reason 
for NgsRelate and lcMLkin performance being compromised in the 
Marsh et al. study might be sensitivity to noise in population allele 
frequencies.

Overall, these results suggest no single tool may be universally 
superior in estimating kinship levels with low-coverage genomes. 
Using multiple tools in parallel and interpreting the results in light of 
the superiorities and weaknesses of each tool and the particularities 
of each dataset (e.g. knowledge of allele frequencies, genetic struc-
ture within the sample, and the possibility of inbreeding) may be the 
most prudent and confident approach. Meanwhile, both the archae-
ogenomics community and wildlife geneticists may continue seeking 
novel and more powerful methods, such as combining the two alter-
native normalization approaches (population allele frequencies and 
the median mismatch in a sample) and using haplotype information 
(Ringbauer et al., 2024) to calculate more robust kinship coefficients.
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