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1  |  INTRODUC TION

The use of palaeogenomes for inferring genetic kin relations in 
ancient human populations is growing at an accelerating pace. 
These studies have unraveled diverse types of social relations of 
past human societies, from the composition of households (Ning 
et al., 2021; Yaka et al., 2021) or burial treatment of mass murder 

victims (Schroeder et al., 2019) to matrilineal (Kennett et al., 2017) 
or patrilineal traditions studied in graves (Fowler et al., 2022; 
Mittnik et al., 2019; Rivollat et al., 2023; Sánchez- Quinto 
et al., 2019). However, determining the degree of kinship using 
single nucleotide polymorphism (SNP) data from low- coverage 
genomes is fraught with difficulties, mainly arising from data scar-
city. Most published palaeogenomes are below 1× coverage and 
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Abstract
There is growing interest in uncovering genetic kinship patterns in past societies using 
low- coverage palaeogenomes. Here, we benchmark four tools for kinship estimation 
with	such	data:	lcMLkin,	NgsRelate,	KIN,	and	READ,	which	differ	in	their	input,	IBD	es-
timation methods, and statistical approaches. We used pedigree and ancient genome 
sequence	simulations	to	evaluate	these	tools	when	only	a	limited	number	(1	to	50	K,	
with	minor	allele	frequency	≥0.01)	of	shared	SNPs	are	available.	The	performance	of	
all	four	tools	was	comparable	using	≥20	K	SNPs.	We	found	that	first-	degree	related	
pairs can be accurately classified even with 1 K SNPs, with 85% F1	scores	using	READ	
and 96% using NgsRelate or lcMLkin. Distinguishing third- degree relatives from unre-
lated pairs or second- degree relatives was also possible with high accuracy (F1 > 90%)	
with	5	K	SNPs	using	NgsRelate	and	lcMLkin,	while	READ	and	KIN	showed	lower	suc-
cess	(69	and	79%	respectively).	Meanwhile,	noise	in	population	allele	frequencies	and	
inbreeding (first- cousin mating) led to deviations in kinship coefficients, with different 
sensitivities across tools. We conclude that using multiple tools in parallel might be 
an effective approach to achieve robust estimates on ultra- low- coverage genomes.
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ancient	DNA,	inbreeding,	kinship	coefficient	estimation,	low	coverage,	pedigree	simulation
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thus	do	not	allow	reliable	diploid	genotyping,	required	by	popular	
kinship	estimation	tools	such	as	KING	(Manichaikul	et	al.,	2010). 
Although	 imputation	 has	 recently	 been	 shown	 to	 produce	 reli-
able diploid genotypes using shotgun genomes >0.5× (Martiniano 
et al., 2017; Sousa da Mota et al., 2023), a substantial fraction of 
palaeogenomes	still	do	not	reach	this	threshold;	e.g.	in	the	AADR	
repository (v54.1.p1) (Mallick et al., 2024), out of 2041 published 
shotgun genomes with reported coverage from their original 
source, 916 (45%) have coverage <0.5×.

A	 number	 of	 solutions	 fine-	tuned	 for	 performance	 on	 low-	
coverage	ancient	DNA	 (aDNA)	data	have	been	published	over	 the	
last few years. These algorithms use pseudo- haploid genotypes (e.g. 
Kuhn et al., 2018), genotype likelihoods (e.g. Hanghøj et al., 2019; 
Lipatov et al., 2015;	Žegarac	et	al.,	2021) or read information (e.g. 
Popli et al., 2023) instead of diploid calls. These methods also dif-
fer in (a) how they normalize the pairwise mismatch values between 
two genomes to infer the kinship degree and (b) whether they use 
method- of- moment estimators or probabilistic approaches. The 
most	widely	cited	tool,	READ	(Kuhn	et	al.,	2018), compares the rate 
of average mismatch (P0) between a genome pair with the median 
(or maximum) P0 of a large enough sample from the same popula-
tion, assuming this median estimate represents the expected P0 
of an unrelated pair. This is similar to the pairwise mismatch rate 
(PMR) calculation by Kennett and colleagues (Kennett et al., 2017). 
Two other commonly used tools, lcMLkin (v2) (Lipatov et al., 2015; 
Žegarac	et	al.,	2021) and NgsRelate (v2) (Hanghøj et al., 2019), use 
genotype	 likelihoods	and	population	allele	 frequency	estimates	 to	
infer the kinship degree between pairs within a likelihood frame-
work.	 The	 TKGWV2	 (Fernandes	 et	 al.,	 2021) algorithm also uses 
population	allele	 frequencies	within	a	method-	of-	moments	 frame-
work. Finally, the recently published method, KIN (Popli et al., 2023), 
uses a likelihood- based framework as well as a Hidden Markov 
Model (HMM) to infer segments of identity- by- descent (IBD) be-
tween pairs of individuals. KIN also uses the average mismatch in 
a sample for normalizing P0 rates for inferring identity- by- descent 
(IBD),	akin	to	READ.

Although	each	of	 these	methods	 is	being	widely	used	by	 the	
palaeogenomics community, their relative accuracy and perfor-
mances have not been systematically investigated. One recent 
exception is a study by Marsh et al. (2023), who compared these 
methods using real ancient and modern- day genomic datasets. 
The authors lacked knowledge of real relationships but studied 
how consistency among estimates was affected by downsampling 
high-	coverage	genomes,	reporting	that	READ,	PMR,	and	TKGWV2	
were less affected by low coverage than lcMLkin and NgsRelate. 
However, this study was limited by the lack of a ground truth set 
of relationships.

Beyond palaeogenomes, inferring genetic relatedness from 
low- coverage genomes can also be a challenge faced by conser-
vation programmes, as well as evolutionary and ecological studies 
of	wild	populations.	 Such	wildlife	 studies	 frequently	 rely	on	accu-
rate	pedigree	information	(Galla	et	al.,	2022; Oliehoek et al., 2006; 
Pemberton, 2008), with motivations ranging from minimizing 

inbreeding to investigating heritability patterns. Identifying close 
genetic kin is also relevant for population genomics studies, where 
relatives are removed to ensure independence among samples.

Similar to human studies, relatedness estimation in wildlife sam-
ples has been traditionally performed using microsatellites (STRs), 
which	can	be	powerful	and	cost-	effective	(e.g.	Godoy	et	al.,	2022; 
Koch et al., 2008; Moran et al., 2021; O'Reilly & Kozfkay, 2014). 
However, genome- wide SNP data can also be an effective, if not 
more	 precise,	 alternative	 to	 using	 STRs	 in	 wildlife	 studies	 (Galla	
et al., 2020). Importantly, many wildlife genetics studies rely on fecal 
DNA	 samples,	 where	 DNA	 is	 usually	 available	 in	 degraded	 form,	
broken into short fragments and/or in too low amounts to allow re-
liable diploid genotyping for a large number of samples (e.g. Pinho 
et al., 2014).	Genome-	wide	SNP	data	obtained	through	either	shot-
gun	sequencing	or	capture	sequencing	may	be	a	useful	alternative	
in such cases (Bérénos et al., 2014; de Flamingh et al., 2023;	Galla	
et al., 2020). Moreover, many such genomic datasets will be of low 
and heterogeneous coverage, with limited numbers of SNPs per in-
dividual. The relatedness estimation methods discussed in this work 
are therefore directly applicable to such data.

Here, we compare the performances of four algorithms designed 
for	kinship	estimation	with	sparse	SNP	data,	lcMLkin,	NgsRelate,	READ,	
and KIN, using ancient- like genomic data from pedigree simulations to 
distinguish close kin (first-  to third- degree relatives) and non- kin. We 
test the effects of ultra- low coverages (using down to 1000 SNPs per 
pair),	inbreeding,	and	noise	in	allele	frequency	estimates	(i.e.	random	
fluctuations	around	 the	 true	allele	 frequency	values	 that	mimic	bio-
logical	or	random	technical	variation	in	the	real	data).	We	chose	READ,	
lcMLkin, and NgsRelate as these are among the most widely used al-
gorithms on low- coverage genomes (Table 1). Meanwhile, we chose 
KIN along with NgsRelate as these algorithms are designed to separate 
genetic correlations due to direct kinship or inbreeding. Importantly, 
READ	 and	 KIN	 use	 sample-	based	 normalization,	while	 lcMLkin	 and	
NgsRelate	use	population	allele	frequencies	to	infer	IBD.

2  |  MATERIAL S AND METHODS

2.1  |  Pedigree simulations

We simulated ancient genome data representing pairs of individuals 
with known relationships. We first created 600 founder genotype data 
from	scratch	using	8,677,101	SNPs	with	minor	allele	frequency	(MAF	
>0.01) from n = 112	Tuscany	(TSI)	genomes	from	the	1000	Genomes	
Project	v3	(Auton	et	al.,	2015) and randomly creating diploid genotypes 
(Appendix	S1). Note that our approach eliminates any background re-
latedness among founders as well as any homozygosity tracts within 
founder genomes; this is not realistic but simplifies the interpretation 
of the kinship estimation results. We repeated the creation of founder 
data 12 times (runs), each producing different sets of founders.

We then employed Ped- sim (v1.3) (Caballero et al., 2019) to sim-
ulate pedigrees using this founder pool, producing genotypes from 
pedigrees of various relationship degrees and types separately, 
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including first- , second and third- degree relatedness without in-
breeding, as well as first- degree and second- degree relatedness with 
first- cousin mating (Figure 1). Within Ped- sim, we used a linearly 
interpolated sex- specific recombination map (Bhérer et al., 2017) 
with the ‘- m’ option and crossover interference model (Housworth 
& Stahl, 2003) using the ‘- - intf’ option; we also kept track of founder 
sexes	(Appendix	S1). We thus simulated n = 72	pedigrees	composed	
of first- degree, n = 96 second-	degree,	and	n = 96	third-	degree	related	
pairs. The founders of each pedigree and simulated individuals from 
distinct pedigrees were treated as ‘unrelated’. From these simulated 
pedigrees, we randomly chose n = 48	pairs	for	each	relationship	type	
(Table 2)	(Appendix	S1).

For the pedigree simulations with inbreeding, first- degree and 
second- degree pedigrees (parent–offspring and grandparent–grand-
child relationships) were simulated in the presence of first- cousin 
mating (i.e. the parents of an offspring or a grandchild are first cous-
ins respectively). We also used n = 48	pairs	for	each	relationship	type	
(Table 2).

2.2  |  Ancient DNA sequence data simulation and 
pre- processing

To create realistic ancient- like genotypes, we first simulated Illumina 
short read data based on each simulated individual's genotype, with 
aDNA-	like	 postmortem	 damage	 and	 sequencing	 error	 introduced	
using the gargammel software (Renaud et al., 2017)	(Appendix	S1). We 
limited the generated data to randomly chosen 200,000 autosomal 
SNPs. We generated ancient read data with 5× depth of coverage per 
individual, without any present- day human or microbial contamination.

We then processed the gargammel- simulated read data following 
the	same	procedure	as	applied	to	ancient	genome	sequencing	librar-
ies	in	our	group	and	other	research	teams	(e.g.	Altınışık	et	al.,	2022; 
Koptekin et al., 2023; Yaka et al., 2021). First, we removed the adapt-
ers from the simulated ancient reads and then merged the paired 
end reads (Schubert et al., 2016). The reads were then mapped to the 
human reference genome (hs37d5) using the bwa software ‘samse’ 
function (v0.7.15) (Li & Durbin, 2009) with the ‘- aln’ option, and pa-
rameters are set to ‘- l 16,500’, ‘- n 0.01’ and ‘- o 2’. Third, we removed 
the duplicate reads with identical starting and end positions using 
FilterUniqueSAMCons.py	script	(Kircher,	2012). We also eliminated 
the reads with a minimum of 10% mismatches to the human refer-
ence	genome.	Finally,	the	remaining	reads	were	trimmed	10 bps	from	
both	ends	to	remove	the	PMD-	related	C-	to-	T	and	G-	to-	A	substitu-
tions	 using	 the	 bamUtil	 software	 with	 the	 ‘trimBAM’	 option	 (Jun	
et al., 2015).

2.3  |  Genotyping and downsampling

We	randomly	downsampled	the	BAM	files	of	all	simulated	individuals	
from 5× to 1× coverage using Picard Tools DownsampleSam (2.25.4) 
(Broad Institute, 2019). Because we aim to study the performance TA
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of the kinship coefficient (θ) estimation on low- depth ancient data, 
most of our analyses involve sub- samples of the 1× data (only one 
read per SNP). We used the 5× data only to test noise in population 
allele	frequencies.

We next performed pseudo- haploid genotyping (Skoglund 
et al., 2012) from simulated 1×	ancient	genomes	using	the	SAMtools	
(v.1.9) ‘mpileup’ function (Danecek et al., 2021), followed by run-
ning pileupCaller (v1.4.0.5) with the ‘- - randomHaploid’ parameter 
(Schiffels, n.d.). We used the 200 K autosomal SNPs we selected 
earlier	to	generate	text	pileup	files	for	all	BAM	files.	Mapping	quality	
and	base	quality	filters	were	set	to	>30	in	SAMtools	(v.1.9)	mpileup.	
The output pileup files were given as input to pileupCaller software 
to produce pseudo- haploid genotype data by randomly sampling 
one read at each SNP. The output files were then converted to bi-
nary	PLINK	 files	using	ADMIXTOOLS	convertf package (Patterson 
et al., 2012) with parameter ‘- p’ and then to transposed ped/fam for-
mat using PLINK (v1.9) (Purcell et al., 2007). Last, we retained only 
non- missing genotype calls for each pair of individuals using PLINK 
(v1.9) with the option ‘- - geno 0’ (note that missing SNPs are removed 
only for the analysed pair). This reduced the number of SNPs from 
200 K to an average of 77 K for 1× depth of coverage.

We randomly chose subsets of 1, 5, 10, 20, and 50 K SNPs shared 
between each simulated pair five times to explore the lower limits 
of using ancient genomes for genetic relatedness estimation. This 
allowed us to study how much kinship coefficient estimates vary de-
pending on the set of variants used for the analysis. We note that 

the term replicate, used for the downstream analysis, refers to this 
repeated downsampling (n = 5).

2.4  |  Simulations with background relatedness

In addition to the primary dataset we generated above using syn-
thetic	founders	based	on	1000	Genomes	TSI,	we	created	another	
founder dataset comprising 250 individuals with background re-
latedness (i.e. due to drift). For this, we employed the msprime en-
gine (Baumdicker et al., 2022; Kelleher et al., 2016) in the mode of 
‘HomSap’	from	the	stdpopsim	library	(Adrion	et	al.,	2020; Lauterbur 
et al., 2023) to simulate the genetic data of these founder indi-
viduals.	We	utilized	the	 ‘HapMapII-	GRCh37’	 (Frazer	et	al.,	2007) 
with the ‘- g’ option as the recombination map. We simulated the 
500 haploid genomes descended from the Linearbandkeramik 
(LBK)	 population,	 which	 can	 be	 described	 as	 early	 European	
Neolithic	 populations	 of	 Anatolian	 descent	 (Kılınç	 et	 al.,	 2016), 
of	 the	 multi-	population	 model	 of	 ancient	 Eurasia	 model	 (Kamm	
et al., 2020),	 with	 the	 ‘-	d	 AncientEurasia-	9K19	 0	 500’	 option.	
Subsequently,	 we	 transformed	 the	 succinct	 tree	 sequence	 out-
put	generated	by	the	stdpopsim	software	into	VCF	using	the	tskit	
library (Kelleher, 2018) ‘vcf’ command with the ‘- - ploidy 2’ op-
tion. We then narrowed our analysis to 200 K randomly selected 
SNP positions through a customized bash script. These selected 
positions were further used to extract reference bases from the 

F I G U R E  1 Primary	simulations	and	analysis	workflow.	We	created	600	synthetic	founder	genomes	using	1000	Genomes	Project	v3	
Tuscany (TSI) samples. We used these founder genomes to create pedigrees with Ped- sim and human genetic maps, from which we chose 
sets of related pairs of different types, with n = 48	pairs	created	for	each	relationship	type	(two	types	for	first	degree	and	three	types	each	
for second and third degree) (Table 2). We also created parent–offspring and grandparent–grandchild pairs, where the offspring was the child 
of	first	cousins.	We	sub-	sampled	these	genotypes	to	200	K	SNPs	and	created	aDNA-	like	sequencing	read	data	using	the	gargammel	tool.	
The reads were then aligned to the reference genome to produce 5×	BAM	files,	which	were	further	downsampled	to	1× coverage. We called 
pseudo-	haploid	genotypes	or	calculated	genotype	likelihoods	(GL)	for	the	same	200	K	SNPs	and	downsampled	these	to	1–50	K	subsets,	
each	SNP	counts	downsampled	randomly	five	times.	The	genotypes,	GL,	or	BAM	files	were	input	into	the	four	kinship	estimation	tools.

TA B L E  2 The	relationships	used	for	palaeogenomic	data	simulation.

Relationship Degree Number of sex combinations Number of individuals Number of pairs

Parent–offspring First 4 72 48

Siblings First 3 96 48

Half- siblings Second 6 96 48

Grandparent–grandchild Second 4 72 48

Avuncular Second 8 96 48

First cousins Third 10 96 48

Great-	grandparent–great-	grandchild Third 8 72 48

Grand	avuncular Third 16 96 48

Parent–offspring (inb) First 8 72 48

Grandparent–grandchild	(inb) Second 4 72 48

Note: Number of sex combinations: the count of distinct configurations of individuals' sexes within the same pedigree for each simulation run. 
Number of pairs: the number of independently simulated pairs for each type of relationship. ‘inb’: pairs where inbreeding was simulated with the child 
or grandchild being the offspring of a first-cousin mating (Figure 1).
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6 of 17  |     AKTÜRK et al.

human reference genome (hs37d5) using the ‘getfasta’ command 
of	 BEDtools	 (v2.27.1)	 (Quinlan	 &	Hall,	2010). We estimated the 
transition:transversion	 rate	 from	 the	1000	Genomes	Dataset	 v3	
TSI population to assign alternative alleles to the retrieved refer-
ence positions. With this information, we stochastically generated 
alternative alleles for each position in our dataset, employing a 
customized R script. This approach was instrumental in replicating 
genetic variation according to the observed rates within the TSI 
population,	 offering	 a	 realistic	 distribution	 of	 allele	 frequencies	
within our simulated dataset. The rest of the pipeline, comprising 
pedigree	simulation,	ancient	sequence	simulation,	pre-	processing,	
genotyping, and downsampling, was identical to that used to cre-
ate our primary dataset.

2.5  |  Genetic relatedness estimation using READ, 
NgsRelate, lcMLkin and KIN

2.5.1  |  READ

This non- parametric genetic relatedness estimation tool relies on 
the proportion of mismatching sites between pseudo- haploid ge-
nomes,	i.e.	the	pairwise	mismatch	rate	(P0)	(Appendix	S1). We ran 
READ	with	pseudo-	haploid	genotype	data	of	 the	simulated	 indi-
vidual	pairs	using	default	parameters.	We	combined	all	READ	re-
sults for all n = 48	pairs	of	each	eight	relationship	types	into	eight	
sets, each combined with unrelated pairs (~2000–4000) from 
different	pedigrees	of	this	type	 (Appendix	S1).	As	these	sets	are	
mainly composed of unrelated individuals, we used their median 
P0 value for normalization (~0.24). The kinship coefficient (θ) esti-
mate for each related and unrelated pair was calculated using the 
formula:

These θ estimates can be negative when a pair shares fewer al-
leles IBS than the ones of the average unrelated pair (Konovalov & 
Heg, 2008), suggesting a non- kin relationship. Thus, we set the neg-
ative θ estimates to 0.

2.5.2  |  NgsRelate

NgsRelate v2 (Hanghøj et al., 2019) (hereon NgsRelate) is a maxi-
mum	likelihood-	based	method	estimating	Jacquard	coefficients	(J1, 
J2, …, J9)	given	genotype	 likelihoods	(GL)	and	population	allele	fre-
quencies.	To	calculate	 the	GLs	 for	each	 individual	separately	 from	
the	gargammel-	produced	BAM	files,	we	used	the	ANGSD	program	
(Korneliussen et al., 2014)	with	the	‘-	-	gl	2’	option.	We	limited	GL	cal-
culation	to	 the	chosen	200	K	autosomal	SNPs	 (MAF	  > 0.01)	using	
the	‘-	sites’	parameter.	The	beagle	text	output	file	of	ANGSD	(-	-	doGlf	
2)	was	manipulated	to	generate	a	GL	file	containing	only	two	individ-
uals with their shared SNPs. We eliminated pairwise missing SNPs 
by	 keeping	 only	 sites	with	 GL	 values	 not	 equal	 to	 0.33	 for	 three	

genotype states (major/major, major/minor, and minor/minor) for 
both individuals with a custom R script. Next, we randomly down-
sampled the shared SNPs between every pair of individuals to 1–50 
K, five times each, using an in- house bash script. Then, every pair's 
GL	files	with	five	different	SNP	subsets	were	converted	to	binary	GL	
file	format.	The	background	allele	frequency	files	for	corresponding	
SNPs	were	prepared	using	their	MAF	of	the	1000	Genomes	TSI	sam-
ple with n = 112	 individuals.	The	MAF	threshold	of	NgsRelate	was	
set to 0 with the option ‘- l’. The output file produced by NgsRelate 
for each pair includes a θ value corresponding to the kinship coef-
ficient estimate.

2.5.3  |  NgsRelate	with	alternative	background	allele	
frequencies

With NgsRelate, we also conducted trials with alternative back-
ground	MAF.	This	analysis	was	restricted	to	the	two	first-	degree	re-
latedness categories, parent–offspring (n = 48)	and	siblings	(n = 48);	
we reasoned these effects would be consistent across different 
relatedness	 types.	We	 ran	 the	 ANGSD	 program	with	 the	 above-	
mentioned	 parameters	 on	 the	BAM	 files	 using	 chosen	 200	K	 au-
tosomal	SNPs	on	the	BAM	files	and	we	processed	the	resulting	GL	
file	to	obtain	pairwise	GL	files	without	missing	SNPs.	We	then	used	
three	alternative	background	MAF	calculations:	(1a)	MAFs	from	the	
1000	Genomes	TSI	population	(n = 112)	as	in	the	original	analyses.	
(1b)	MAFs	calculated	from	gargammel-	produced	5×	coverage	BAM	
files of the same individuals used in this analysis: 72 individuals 
comprising the 48 parent–offspring and 96 individuals comprising 
the	48	sibling	pairs.	For	this,	we	ran	the	ANGSD	program	with	the	
same parameters on the 5×	 coverage	 BAMs	 and	 obtained	MAFs	
for	 both	 relatedness	 categories	 separately.	 (1c)	 MAFs	 estimated	
from gargammel- produced 1×	 coverage	 BAM	 files	 of	 the	 same	
individuals.

We	also	used	modified	MAFs	in	three	ways:	(2a)	No	noise.	(2b)	
Adding	 a	 low	 level	 of	 random	 noise	 (i.e.	 random	 variation).	 Here,	
we	introduced	random	noise	to	the	original	MAFs	from	the	TSI,	as	
well	as	MAFs	called	from	1× and 5× genomes (as described earlier), 
while ensuring the resulting values remained within the valid range 
of	0	to	0.5.	For	this,	we	first	transformed	the	MAF	values	with	the	
logit function logit(p) = log(p∕(1 − p)). This transformation aims 
to	 stretch	 the	 original	 allele	 frequencies	 to	 the	 entire	 real	 num-
ber space, making them amenable to adding random noise. Then, 
we	generated	 the	noise-	added	allele	 frequency	values	 following	a	
Gaussian	distribution	with	a	mean	based	on	 the	 logit-	transformed	
MAF	values	and	a	standard	deviation	of	0.5.	Then,	we	applied	the	
expit function, expit(p) = 1∕(1 + exp ( − p) ), to the random values to 
transform them back to the 0 to 1 interval. Finally, we adjusted the 
MAF	values	 to	ensure	 they	 fell	within	 the	valid	 range	of	0	 to	0.5.	
This adjustment involved subtracting any values that exceeded 0.5 
from	1.	(2c)	Adding	a	high	level	of	random	noise.	Here,	we	repeated	
the	same	steps	as	in	(2b)	but	added	Gaussian	noise	with	a	standard	
deviation of 1.

� = 1 −
(
P0pair ∕P0median

)
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    |  7 of 17AKTÜRK et al.

We	manipulated	 the	 resulting	GL	 and	MAF	 files	 for	 each	 pair	
to have five replicates of 1, 5, 10, 20, and 50 K shared autosomal 
SNPs between pairs of samples. We then ran NgsRelate with the 
parameters described earlier for each pair of parent–offspring and 
sibling	categories	with	these	nine	different	background	MAF	values	
(Table 3).

2.5.4  |  lcMLkin

lcMLkin (Lipatov et al., 2015) is another maximum- likelihood- based 
software	detecting	genetic	relatedness.	Unlike	NgsRelate,	it	assumes	
a non- inbred population and estimates Cotterman coefficients using 
GL	and	population	allele	frequencies.	We	prepared	input	VCF	files	
for	each	pair	to	run	lcMLkin	(v2.1)	(Altınışık,	2023) implemented for 
Python3. We used BCFtools mpileup and call commands (Li, 2011) 
to	estimate	the	genotype	likelihoods	of	each	individual	using	BAM	
files	for	the	200	K	SNP	set	with	the	mapping	and	base	quality	fil-
ter	 parameters	 ‘-	q10’	 and	 ‘-	Q13’,	 respectively.	 These	 thresholds	
were	 selected	 based	 on	 the	 default	 filters	 of	ANGSD	 to	 estimate	
GLs	for	NgsRelate	analysis.	 lcMLkin	requires	the	genotype	data	of	
the	selected	background	population	for	allele	frequency	estimation.	
These genotype data were provided in PLINK format (bed/bim/fam) 
with the argument ‘- p’. We prepared these genotype data using the 
200	K	selected	autosomal	SNPs	(MAF	>0.01). We changed the de-
fault	allele	frequency	thresholds	integrated	into	the	lcMLkin	python	
script from minimum 0.05 and maximum 0.95 to minimum 0.01 and 
maximum	0.99.	We	filtered	out	missing	(non-	shared)	SNPs	from	VCF	
files using an in- house bash script to collect only overlapping SNPs 
between	each	 simulated	pair.	After	 that,	we	 randomly	 selected	1,	

5, 10, 20, and 50 K shared SNPs between pairs of samples, inde-
pendently	 five	 times	each,	 and	generated	downsampled	VCF	 files	
using BCFtools view (Li, 2011)	with	the	‘-	R’	parameter.	As	the	link-
age	 disequilibrium	 (LD)	 pruning	 application	 of	 lcMLkin	 removes	
closely linked SNPs from the relatedness analysis, we modified the 
program script such that downsampled SNPs are not pruned by LD. 
This was done for simplicity to ensure we use the same number of 
SNPs	 in	each	trial	and	across	different	software.	Also,	with	≤50	K	
SNPs across the genome, the linkage between neighboring SNPs will 
be minimal. The relatedness coefficient (r) is represented with the 
‘PI_HAT’	estimate	in	the	output	files	of	lcMLkin.	We	calculated	the	
kinship coefficient value as � = r ∕2.

2.5.5 | KIN

KIN (Popli et al., 2023) has been recently developed to estimate 
relatedness up to the third degree and differentiate between par-
ent–offspring and sibling pairs using Hidden Markov Models (HMM). 
The	algorithm	uses	P0	estimates	 (like	READ)	 in	genomic	windows	
calculated	directly	 from	BAM	files,	 and	 further	estimates	possible	
ROH	and	IBD	tracks	using	HMM	(Appendix	S1).	As	KIN	does	not	run	
with only two individuals and because we wanted to test one pair 
at a time to control for the shared SNP counts between individu-
als,	we	first	grouped	our	BAM	files	into	triplets	for	each	relationship	
type,	including	one	pair	of	BAM	files	to	be	analysed	and	one	BAM	
file of a randomly chosen simulated individual. We determined the 
read depth of each site at the predefined 200 K SNPs for each triplet 
using	SAMtools	(v1.9)	(Danecek	et	al.,	2021)	‘depth’	with	the	‘-	q	30'	
and '- Q 30’ options. Then, we removed sites that do not contain at 

TA B L E  3 The	overview	of	the	datasets	utilized,	MAF	sources	incorporated,	pedigree	types	employed,	and	the	corresponding	SNP	counts	
investigated for kinship estimation performance across the four tools evaluated in this study.

Software

Dataset with or 
w/o background 
relatedness

Pedigree type (w/o 
inbreeding)

MAF 
source Noise application

No. of SNPs inspected

1 K 5 K 10 K 20 K 50 K

READ w/o All NA NA √ √ √ √ √

With Parent- offspring and siblings NA NA √ X X √ X

NgsRelate v2 w/o All TSI Without noise √ √ √ √ √

w/o Parent- offspring and siblings TSI With	noise	(SD = 0.5) √ √ √ √ √

w/o Parent- offspring and siblings TSI With	noise	(SD = 1) √ √ √ √ √

w/o Parent- offspring and siblings 1×	BAMs Without noise √ √ √ √ √

w/o Parent- offspring and siblings 1×	BAMs With	noise	(SD = 0.5) √ √ √ √ √

w/o Parent- offspring and siblings 1×	BAMs With	noise	(SD = 1) √ √ √ √ √

w/o Parent- offspring and siblings 5×	BAMs Without noise √ √ √ √ √

w/o Parent- offspring and siblings 5×	BAMs With	noise	(SD = 0.5) √ √ √ √ √

w/o Parent- offspring and siblings 5×	BAMs With	noise	(SD = 1) √ √ √ √ √

With Parent- offspring and siblings TSI None √ X X √ X

lcMLkin v2 w/o All TSI None √ √ √ √ √

KIN w/o All NA NA X √ √ √ √

Note:	The	pedigrees	with	inbreeding	are	not	shown.	NA	denotes	tools	that	do	not	use	MAF	information.	None	denotes	tools	without	the	application	
of	noise,	though	they	employ	MAF	information.
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8 of 17  |     AKTÜRK et al.

least one read shared between a pair of individuals using a custom 
bash script.

We randomly downsampled the remaining sites to 1, 5, 10, 20, 
and 50 K, independently five times each, for each pair and gave 
these downsampled SNP lists as input with the ‘- - bed’ argument 
to run the KINgaroo algorithm, a python package to generate ROH 
estimates and input files for KIN. We ran KINgaroo with default 
parameters without contamination correction (using the ‘- - cnt 0’ 
option)	and	without	 indexing	and	sorting	of	BAM	files	(using	the	
‘- - s 0’ option) for each triplet separately 25 times (n = 5	SNP	counts	
× n = 5	replicates).

We separately collected pairwise mismatch values (P0) of pairs 
for each relationship type (found in ‘p_all.csv’ file under the ‘hmm_
parameters’ directory created by KINgaroo) and calculated their me-
dian P0 values for each SNP count and replicate, corresponding to 
a P0 value of an average unrelated pair. To apply normalization for 
kinship estimation with these median values (~0.24), we manually 
changed the text files of P0, ‘p_0.txt’ created by KINgaroo under 
the ‘hmm_parameters’ directory. We then ran KIN with input files 
separately for each triplet using default parameters. The KIN output 
file	includes	the	Jacquard	coefficients	(k0, k1, and k2) for each pair an-
alysed. We calculated the kinship coefficient using these estimates 
as � =

(
k1 ∕4 + k2 ∕2

)
.

We note that KIN gave sporadic errors when analysing pairs with 
1 K SNPs and when using data from grandparent–grandchild pairs 
under	first-	cousin	mating	(Appendix	S1).

2.6  |  Classification of kinship coefficient estimates

We categorized each simulated pair into one of four relationship cat-
egories, i.e. first- , second- , third- degree related or unrelated, using 
their θ estimates. Here, we used two assessment criteria. The first 
criterion was the arithmetic mean (average) of the theoretical kinship 
coefficient values. The arithmetic mean of two expected values θ1 
and θ2 would be 

(
�1 + �2

)
∕2, i.e. the mid- point of expected kinship 

coefficient values of two relatedness degrees (Table S6).	READ	and	
TKGWV2	also	use	 this	mid-	point	cut-	off	approach.	The	alternative	
criterion we explored was the geometric mean. The geometric mean 
of two expected values θ1 and θ2 would be 

√
�1 × �2  ,	which	is	always	

smaller	 than	 the	arithmetic	mean.	As	θ values decrease with lower 
degrees of relatedness in a non- linear fashion (see Figures S1–S4), we 
asked if using the geometric mean may improve the accuracy of relat-
edness type classification. The cut- offs used are shown in Table S6. 
As	zero	values	cannot	be	tolerated	while	calculating	the	geometric	
mean, we applied a modified geometric mean for third- degree cut- off 
using the splicejam (v0.0.63.900) package in R (Ward, 2023).

2.7  |  Classification and accuracy

We created a confusion matrix using either the arithmetic or 
geometric mean criteria for each relationship type. We used 

the ‘confusionMatrix’ function of the R caret (v3.5) package 
(Kuhn, 2008). To maintain the balance between classes in confusion 
matrix calculation, we randomly selected only 96 second-  and third- 
degree related and unrelated pairs using the ‘sample’ function of R 
without replacement. We used the same number of each relation-
ship type for second and third- degree pairs (n = 32	each).	After	that,	
we prepared four different datasets for the tools, consisting of clas-
sified estimates based on either the arithmetic or geometric mean 
and their actual classes.

The classification metrics we used were the true positive rate 
(TPR), true negative rate (TNR), false positive rate (FPR), false neg-
ative rate (FNR), precision, and the F score (F1). To understand how 
often the four software correctly identified genetic relatedness, we 
also	determined	the	relative	frequency	of	both	true	and	false	pre-
dictions	for	each	class	and	SNP	count.	Additionally,	we	categorized	
false predictions according to their inferred classes.

2.8  |  Statistical tests on kinship 
coefficient estimates

2.8.1  |  Linear	mixed	effect	model

We used a linear mixed effect model to study the effect of software 
choice and SNP count on θ estimates for each relationship type. The 
fixed effects were (a) the type of genetic relatedness estimation 
tools	we	used,	i.e.	READ,	NgsRelate,	KIN,	and	lcMLkin,	and	(b)	SNP	
counts shared between simulated individuals (5, 10, 20, and 50 K). 
The pair of individuals was included as a random effect.

We used the ‘lmer’ function in the R lmerTest package (Bates 
et al., 2015) with the R code: Imer(θ ~ Software + SNPCount + 
(1| pairs)). We repeated the analysis with the estimates for each rela-
tionship type separately. We used the R base function ‘summary’ on 
the lmer object to visualize p values of pairwise mean θ difference 
among software and SNP counts, using lcMLkin and 50 K SNPs as 
the baseline. To ensure data independence, if multiple pairs included 
the same individual (which happened among parent–offspring, 
grandparent–grandchild, and great- grandparent–great- grandchild 
pairs), we chose only one of the pairs. In this way, we kept only 24 
pairs for these three relatedness types.

We further tested the effect of software and shared SNP 
counts on θ	 estimates	using	 repeated	measures	ANOVA	with	 the	
‘aov’ function in R (R Core Team, 2022). We integrated the pair 
of individuals as an error term to represent individual differences 
while identifying within- group variabilities. We repeated the analy-
sis with the θ estimates for each relationship type, SNP count, and 
replicate	separately.	As	mentioned	earlier,	we	chose	only	one	of	the	
pairs from parent–offspring, grandparent–grandchild, and great- 
grandparent–great- grandchild pairs to maintain data independence. 
We thus kept only 24 pairs for these three relatedness types.

Additionally,	 we	 applied	 the	 same	 linear	 mixed	 effect	 model	
using as a response variable the absolute residuals, i.e. the absolute 
differences between the θ estimate of a pair and theoretical θ value, 
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    |  9 of 17AKTÜRK et al.

AMD = ∣ �expected − � ∣. This way, we investigated the possible devi-
ations from the theoretical values while accounting for the variance 
between pairs.

2.8.2  |  Levene's	test

We performed the Levene's test to explore the homogeneity 
of variances between the kinship coefficient estimates of the 
tools using the ‘leveneTest’ function in the R car package (Fox 
& Weisberg, 2011).	 We	 first	 divided	 the	 estimates	 from	 READ,	
NgsRelate, lcMLkin, and KIN into groups based on SNP counts and 
replicates. Then, we applied Levene's test separately to each group.

3  |  RESULTS

3.1  |  Similar performance among tools at ≥20 K 
SNPs

We	studied	the	performance	of	lcMLkin,	NgsRelate,	READ,	and	KIN	
on genomic data from simulated first-  to third- degree relatives and 
unrelated pairs using various shared SNP numbers from 1 to 50 K, 
without background relatedness or inbreeding (Section 2). θ distri-
butions across all studied pairs and replicates (Figures S1–S4), the 
mean θ estimates (Figure 2), as well as correct kinship degree assign-
ment rates (Figure 3) were similar among the four tools using down-
sampled sets of either 50 or 20 K SNPs. The variance in θ tended to 
be negatively correlated with the SNP count, and in the analyses of 
first- degree pairs, all θ estimates had higher variance between sib-
lings than between parent–offspring.

We found that identifying first- degree relatives is possible 
with	 ≥5	 K	 SNPs	with	 all	 four	 tools	 using	 this	 dataset	 with	 high	
reliability	(≥97.5%	correct	assignment).	Even	with	1	K	SNPs,	READ	
could	assign	first-	degree	pairs	correctly	with	a	frequency	of	85%,	
and	 NgsRelate	 and	 lcMLkin	 at	 a	 frequency	 of	>96% (Figure 3). 
NgsRelate and lcMLkin achieved acceptable performance levels 
with as few as 1 K SNPs for distinguishing between second-  ver-
sus third- degree kin and third- degree kin versus unrelated pairs 
(Figure 3).	 In	 contrast,	 READ	 and	 KIN	 required	 ≥10	 K	 SNPs	 to	
achieve >80% correct assignment for these classes.

3.2  |  Bias and variation in θ  estimates among the 
four tools

We found that θ estimates from all tools display slight biases, but their 
level and directions depend on the relationship type and tool. One 
consistent trend was underestimating θ in first- degree relationships 
and grandparent–grandchild pairs and overestimating θ among unre-
lated pairs (Figure 2). We tested the effect of software choice and SNP 
count on θ estimates with a linear mixed effect model (Table S1) and 
with	repeated	measures	ANOVA	separately	for	different	SNP	counts	
(Table S2), which supported the observation of slight but significant 

differences in estimation among tools, especially in third- degree rela-
tionship types. We further compared the absolute mean differences 
between observed and expected θ (residuals) with the same linear 
mixed effect approach. Testing all eight kinship types separately, and 
for each type, at least one pair of software showed significant differ-
ences in the magnitude of residuals (at t- test p < .05)	(Table S3).

We next studied whether variance among θ estimates (as op-
posed to bias) significantly differs among tools. We ran Levene's 
test for variance differences, comparing estimates among the four 
tools for each relatedness type and SNP count separately (Table S4). 
This revealed significant differences in θ variances among the tools, 
especially	with	 ≤10	K	 SNPs	 (72/90	of	 comparisons	with	p < .05),	
which is consistent with their variable classification performance 
at low SNP counts (Figure 3). The only exceptions were grandpar-
ent–grandchild and great- grandparent–great- grandchild pairs, for 
which variances were similar among tools.

3.3  |  Higher classification accuracy with 
NgsRelate and lcMLkin than other tools

Next, we calculated standard accuracy metrics to represent the four 
tools' classification performances (Figure 4).	All	tools	had	high	(>98%) 
F1	accuracy	values	for	first-	degree	relatives	down	to	5	K	SNPs.	Even	
using	1	K	SNPs,	READ	had	F1 86%, while NgsRelate and lcMLkin had 
F1 96% (Table S5). For second- degree relatives at 5 K SNPs, lcMLkin 
and NgsRelate had F1	values	of	93	and	94%,	respectively,	while	READ	
F1 was only 83% and that of KIN was 88%, similar to values reported 
by Popli and colleagues (Popli et al., 2023). We found similarly com-
promised	assignments	for	third-	degree	related	pairs	using	READ	and	
KIN at 5 K SNPs (69–79%) compared to lcMLkin and NgsRelate (91–
93%). We also note that second-  and third- degree relative estimations 
never reached 100% accuracy, even at 50 K SNPs.

3.4  |  Using geometric versus arithmetic 
mean thresholds

Because θ and kinship degrees are not linearly correlated (e.g. see 
Figure S1), we asked if the geometric mean may provide a more suit-
able threshold (Section 2). We ran the classification of the same pairs 
using the same θ estimates from all four tools using the geometric 
mean as the threshold. We found slightly higher true positive rates 
using the geometric mean over the arithmetic mean for all categories 
except third- degree relatives (Figure S5). Overall, the differences 
between the thresholds appear too modest to entail a change in as-
signment strategy.

3.5  |  Noise in population allele frequency leads to 
over-  or underestimation of θ

Higher	 Gaussian	 noise	 in	 background	 allele	 frequencies	 led	
to systematic overestimation of θ (>0.25) for all 96 pairs that 
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10 of 17  |     AKTÜRK et al.

we analysed (48 siblings and 48 parent–offspring pairs) using 
NgsRelate (Figure 5a,b and Figures S7, S8). However, noise related 
to	imprecise	minor	allele	frequency	estimation	led	to	a	slight	but	
systematic underestimation of θ, with 95% of parent–offspring 
pair comparisons (n = 48	 pairs	× n = 5	 SNP	 counts	× n = 5	 repli-
cates) with θ < 0.25	and	76%	sibling	pair	comparisons	with	θ < 0.25	
(Figure 5a,b and Figures S7, S8). Indeed, the underestimation trend 
was	mitigated	when	 using	 allele	 frequencies	 estimated	 from	 5× 
genomes instead (Figure 5a,b and Figures S7, S8).

3.6  |  Background relatedness has a limited effect 
on kinship estimates

We	studied	the	performance	of	READ	and	NgsRelate	on	genomes	
with background relatedness due to genetic drift, produced using 

population genetic simulations (Section 2).	We	 found	 READ	 θ es-
timates were practically the same when genomes contained back-
ground relatedness compared to when they did not. Meanwhile, 
NgsRelate tended to underestimate θ with these genomes, albeit 
minimally (<0.025) (Figure 5c).

3.7  |  The effect of inbreeding on θ  estimates

Inbreeding, either through consanguinity or through small popula-
tion size, can create distal IBD loops between pairs of individuals 
and elevate θ estimates beyond that expected from the proximal 
relationship (Figure 1). We tested the four tools first using parent–
offspring simulations, where the parents of the offspring were the 
first	cousins.	Average	θ	values	from	READ,	lcMLkin,	and	NgsRelate	
were 0.27–0.28, as expected (Figure 6a and Figure S9). KIN 

F I G U R E  2 The	mean	θ estimates across different tools and SNP counts for (a) first- degree pairs, (b) second- degree pairs, (c) third- degree 
pairs, and (d) unrelated pairs, using all pairs (n = 48)	and	replicates	(n = 5	per	pair).	Results	for	each	overlapping	SNP	count	are	described	with	
distinctive colours. The points show the mean and the vertical lines show ± 1	standard	error,	estimated	using	all	pairs	(n = 48)	and	replicates	
(n = 5	per	pair).	The	red	dashed	line	represents	the	theoretical	θ value for the corresponding relatedness degree. The results reveal variable 
levels of bias, which are not necessarily correlated with SNP counts.
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    |  11 of 17AKTÜRK et al.

estimates were all 0.25 (except for a single pair using 50 K SNPs). For 
NgsRelate, we also calculated a modified θ version, �̂ = J7 ∕2 + J8 ∕4, 
which is expected to reflect proximal IBD sharing without IBD due to 
distal loops. These ̂� estimates were slightly but systematically lower 
than what would be expected from proximal loops (~0.24	using	≥5	
K SNPs).

For grandparent–grandchild pairs, with the grandchild being 
the	offspring	of	first	cousins,	READ,	lcMLkin,	and	NgsRelate	θ val-
ues were higher than expected from proximal loops (Figure 6b and 
Figure S10). This time, NgsRelate �̂ values were also overestimated, 
but at a lower degree than the earlier three θ estimates. KIN did not 
perform with this dataset.

NgsRelate also estimates the individual inbreeding coefficient, F. 
This should be 0.0625 for first- cousin mating. The NgsRelate mean 
F estimates for the child were 0.075 for 1 K SNPs, but 0.051–0.055 

for	≥5	K	SNPs	in	the	parent–offspring	dataset;	likewise,	mean	F was 
0.068	for	1	K	SNPs,	but	0.041–0.048	for	≥5	K	SNPs	in	the	grandpar-
ent–grandchild dataset, suggesting that NgsRelate tends to over-  or 
underestimate F in different settings.

4  |  DISCUSSION

Our benchmarking using simulated genomes revealed a number of 
interesting observations on the four tools tested on sparse and low- 
coverage SNP data. First, all four tools, lcMLkin, NgsRelate, KIN and 
READ,	perform	well	and	are	consistent	with	each	other	down	to	20	
K shared SNPs, even in separating third- degree and unrelated pairs 
(Figure 3). This SNP count lower limit corresponds to two genomes, 
each with ~0.1× coverage genotyped on a ~1 million SNP panel 

F I G U R E  3 The	relative	frequency	of	pairs	assigned	to	first-	,	second-	,	and	third-	degree	related	and	unrelated	categories	by	lcMLkin,	
NgsRelate,	KIN,	and	READ.	The	kinship	coefficient	estimates	from	these	tools	were	classified	using	the	arithmetic	mean	of	theoretical	
kinship	coefficients.	Colours	refer	to	the	assigned	relatedness	degree.	The	frequencies	of	pairs	assigned	to	each	category	are	indicated	as	
percentages	inside	the	bars	(only	for	categories	with	frequency	>5%). The results indicate similar performance of all tools at and above 20 K 
SNPs and better performances of lcMLkin and NgsRelate at low SNP counts.
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12 of 17  |     AKTÜRK et al.

(Mallick et al., 2024); Mathieson et al., 2015), or each with ~0.06× 
genotyped	on	the	1000	Genomes	v3	Africa	diversity	panel	of	~5 mil-
lion SNPs (Koptekin et al., 2023). Theoretically, this lower limit also 
applies to comparisons between a 1× genome and a 0.004× genome, 
using a 5 million SNP panel.

The variance in θ between replicates exhibited a negative cor-
relation with SNP count (Figure 2 and Figures S1–S4), attributable to 
stochastic	noise.	As	expected,	θ estimates also displayed higher vari-
ance between siblings compared to parent–offspring pairs (Figure 2 
and Figure S1), as IBD between siblings varies across the genome 
due to the randomness of recombination.

We also observed a number of systematic differences in perfor-
mance	among	the	tools.	READ	generally	performs	worse	than	the	
other three tools with these data in terms of higher variance in θ 
estimates and, hence, lower assignment accuracy (Figures 2 and 3 
and Figures S1–S4). Meanwhile, KIN θ distributions have lower vari-
ance than the other tools but not improved accuracy, with higher 
degrees of misassignment than lcMLkin and NgsRelate (Figure 3). 
For instance, using 5 K SNPs, the correct assignment of first- degree 
relatives was 99.6% for both lcMLkin and NgsRelate, compared to 
98.5%	for	KIN	and	97.5%	for	READ.	For	third-	degree	relatives,	using	
again 5 K SNPs, correct assignment rates were 91.5% for lcMLkin 
and 89.6% for NgsRelate, in contrast to 75.2% for KIN and 66.7% for 
READ.	This	difference	may	be	expected,	as	lcMLkin	and	NgsRelate	
use	more	information	(population	allele	frequencies	per	site)	to	nor-
malize genomic mismatch rates.

Our comparisons of variance in θ estimates across tools using 
Levene's test also supported the earlier observations. We found 
significant differences among tools for nearly all relationship types 
below 10 K SNPs. Interestingly, grandparent–grandchild and great- 
grandparent–great- grandchild pairs were an exception to this pat-
tern, such that all tools had comparable variances (Table S4). This 
observation may be attributed to fewer recombination events in 
these two kinship types (Qiao et al., 2021).

Beyond variance in θ estimates, average θ estimates were gen-
erally close to expected values under most conditions (Figure 2). 
Nevertheless, slight shifts from expected values can be noticed in 
Figures S1–S4 and Figure 2. The tools underestimated θ in first- 
degree relationships and grandparent–grandchild pairs but over-
estimated θ among unrelated pairs. Further, KIN diverged from the 
other tools in displaying the strongest downward bias for related 
pairs	 but	 the	 least	 upward	 bias	 for	 unrelated	 pairs.	 Except	 for	
KIN estimates, the observed biases were not strongly correlated 
with SNP counts. NgsRelate and lcMLkin appeared overall least 
biased, but not for all kinship types; e.g. for great- grandparent–
great-	grandchild	pairs,	READ	estimates	were	closest	to	expecta-
tion. To summarize, we observed slight biases in the θ estimates by 
all tools, yet the magnitude and tendencies of these biases varied 
based on the type of relationship and the specific tool employed 
(Figure 2 and Table S1).

Similar trends emerged when analysing absolute mean differ-
ences from expectation (residuals) via a linear mixed effect model. 

F I G U R E  4 Classification	performance	of	the	four	tools	using	the	primary	dataset.	FPR,	false	positive	rate;	FNR,	false	negative	rate;	
TPR, true positive rate; TNR, true negative rate and F1, accuracy. The classification was performed using n = 48	pairs	x	5	replicates	for	each	
kinship type (n = 96	for	first-	,	n = 96	for	second-	,	and	n = 96	for	third-	degree	related	and	n = 96	for	unrelated),	generated	using	the	primary	
dataset	(no	inbreeding,	perfect	background	allele	frequencies,	and	no	background	relatedness)	and	using	the	arithmetic	mean	to	classify	
kinship coefficient estimates. Note that we randomly sub- sampled n = 96	pairs	for	second-		and	third-	degree	related	categories	with	each	
relationship	type	represented	equally	(n = 32)	to	ensure	balance.	The	colours	represent	the	count	of	SNPs	shared	between	individuals.
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    |  13 of 17AKTÜRK et al.

F I G U R E  5 The	effects	of	background	allele	frequency	noise	and	background	relatedness	on	θ estimations. (a) Parent–offspring and 
(b) sibling θ	distributions	under	noise	in	allele	frequencies,	calculated	using	NgsRelate	using	n = 48	pairs	each,	and	1	and	20	K	SNPs.	‘MAF	
without	noise’	indicates	TSI	allele	frequencies	(perfect	information)	or	MAF	from	5× and 1×	genomes;	‘MAF	with	noise	(SD = 0.5)’	and	‘MAF	
with	noise	(SD = 1)’	indicate	cases	where	random	Gaussian	noise	is	added	to	allele	frequencies;	‘MAF	from	5×	genomes’	and	‘MAF	from	
1×	genomes’	indicate	MAF	called	using	genomes	of	the	indicated	coverage	(Section	2). (c) Parent–offspring θ distributions without or with 
background	relatedness	using	NgsRelate	and	READ.	The	points	show	the	mean	(n = 48	pairs	× n = 5	replicates)	and	the	vertical	lines	show	
± one standard error (not visible in panels a and b) for 1 and 20 K SNPs. ‘Without background relatedness’: the main simulations where 
synthetic founders were created without background relatedness. ‘With background relatedness’: simulations where we produced founders 
using	a	coalescent	simulator	and	realistic	demographic	model.	The	results	indicate	that	Gaussian	noise	versus	noise	caused	by	imprecise	
population	allele	frequency	estimates	have	opposing	effects	on	θ estimates.

F I G U R E  6 The	mean	θ estimates across different tools and SNP counts for (a) parent–offspring pairs (first- cousin mating) and (b) 
grandparent–grandchild pairs (first- cousin mating). Results for each overlapping SNP count are described with distinctive colours. The points 
show the mean and the vertical lines show ± 1	standard	error,	estimated	using	all	pairs	(n = 48)	and	replicates	(n = 5	per	pair).	The	kinship	
coefficient from NgsRelate (�̂)	was	calculated	ignoring	the	inbreeding-	related	Jacquard	coefficients.	The	red	dashed	line	represents	the	
theoretical kinship coefficient value for the corresponding relatedness degree.
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14 of 17  |     AKTÜRK et al.

Across	all	eight	kinship	types	examined	individually,	significant	dif-
ferences in residual magnitudes were detected between at least one 
pair of software (t- test p < .05)	(Table S3). These trends, though, ap-
pear to have limited impact on classification accuracy: e.g. for sib-
lings, NgsRelate displays the strongest downward bias in average θ 
estimates,	but	 its	classification	accuracy	is	higher	than	both	READ	
and KIN and is on a par with lcMLkin (Figure 3).	As	expected,	SNP	
count also significantly affected residuals (i.e. variance), with larger 
residuals at lower SNP counts (Table S3).

When evaluating standard accuracy metrics (Figure 4), we found 
that all tools achieved high F1 accuracy values for first- degree rela-
tionships, even with as few as 5 K SNPs. However, NgsRelate and 
lcMLkin	consistently	outperformed	READ	and	KIN	for	relationships	
beyond the first degree, particularly at lower SNP counts (Table S5). 
This	trend	aligns	with	the	observed	higher	variation	in	READ	θ esti-
mates and downward bias in KIN θ estimates.

As	discussed	earlier,	READ	and	KIN	display	lower	performance	
at	low	SNP	counts	than	lcMLkin	and	NgsRelate.	READ	and	KIN	use	
the median mismatch rate in a sample of pairs for normalization, 
whereas	 lcMLkin	 and	 NgsRelate	 use	 population	 allele	 frequency	
estimates. We reasoned that using perfect knowledge of allele fre-
quencies	 (frequencies	used	 to	create	 the	 founders)	 in	our	analysis	
may have favoured the performance of lcMLkin and NgsRelate. 
Indeed, Lipatov et al. (2015)	tested	imperfect	allele	frequencies	by	
using the Balding–Nichols model with various FST values (0.01, 0.05, 
and 0.1) at each SNP and observed overestimation of θ with increas-
ing FST. Hence, we repeated NgsRelate with imperfect population 
allele	 frequencies	 in	a	 subset	of	our	data.	Consistent	with	Lipatov	
et al. (2015),	 we	 found	 that	 higher	 random	Gaussian	 noise	 led	 to	
systematic overestimation of θ, which arises because inaccurate 
background	allele	frequencies	inflate	the	impact	of	being	identical-	
by- state (IBS) between any pair.

We then introduced another type of noise, imprecise minor al-
lele	frequencies,	when	running	NgsRelate.	 Intriguingly,	this	 led	to	
an underestimation of θ for the majority of parent–offspring and 
sibling pairs (Figure 5). The reason for this underestimation trend 
could be related to the lower representation of relatively rare 
variants	 when	 estimating	 allele	 frequencies	 from	 low-	coverage	
genomes (Figure S6). Overall, these results suggest that different 
sources	of	noise	in	population	allele	frequency	estimates	can	com-
promise the performance of lcMLkin and NgsRelate. This would 
also be consistent with the results by Marsh et al. (2023), who re-
ported low performance of the latter two tools on real genomic 
datasets.

We further asked if background relatedness among the found-
ers, which would arise due to drift, may cause a shift in θ estimates. 
At	 least	 in	 our	 simulated	 scenario	 of	 European	Neolithic	 ancestry	
with an effective population size of 250, the presence of background 
relatedness among founders did not substantially influence the ac-
curacy or reliability of θ	estimates	produced	by	READ	and	NgsRelate	
using either 1 K or 20 K SNP sets (Figure 5c).

We mark that these results reflect the upper bounds of perfor-
mance in real datasets for a number of reasons:

a. Most of our lcMLkin and NgsRelate analyses presented used per-
fect	information	on	background	allele	frequencies,	which	may	be	
slightly or highly unrealistic in real settings, depending on the 
dataset.

b. Our sets of sample pairs used for normalizing mismatch rates, 
used	 by	 READ	 and	 KIN,	 do	 not	 include	 population	 structure.	
Heterogeneous ancestries in a sample can lead to overestimation 
of θ, as pointed out by Popli and colleagues (Popli et al., 2023).

c. Our primary genome simulation dataset lacks background relat-
edness among the founders, which would be present at variable 
degrees in real data and could confound estimates of proximal 
IBD. This involves results from all four tools. Our experiment 
with founders obtained from a realistic demographic model did 
not create a major shift in θ estimates. Still, we note that the ef-
fect depends on the effective population size, so that in bottle-
necked populations θ estimates might be affected.

d. We did not include identical genomes or fourth- degree or more 
distant kin in the simulations. The presence of more variable 
classes would increase the chance of misidentification and would 
lower classification accuracy overall.

In our primary simulations, NgsRelate and lcMLkin were found 
to	be	more	accurate	than	READ	and	KIN,	with	lower	false	positive	
and false negative rates, especially when using <20 K shared SNPs 
(Figure 3 and 4). The former tools both use genotype likelihoods 
and	population	allele	frequencies.	However,	as	our	trials	with	noise-	
added	or	imperfectly	estimated	population	allele	frequencies	reveal,	
this performance might be compromised in real- life applications. 
In	 fact,	 in	our	own	experience,	READ	results	appear	highly	robust	
and	 reproducible	 compared	 to	 those	 of	 other	 tools	 (e.g.	 Altınışık	
et al., 2022; Yaka et al., 2021).

Among	 the	 tools	 tested,	KIN	performs	 the	most	 sophisticated	
estimation, which includes inference of both ROH and shared IBD 
segments using HMMs, calculating likelihoods for kinship degree 
assignment, and classifying parent–offspring and sibling pairs (we 
note	that	the	recently	released	READv2	also	distinguishes	parent–
offspring	and	siblings;	Alaçamlı	et	al.,	2024). KIN also differed from 
the other tools in estimating all simulated parent–offspring pairs' 
kinship coefficients as precisely as 0.25 due to the authors having 
constrained the parameter optimization space for this relationship 
type (Popli et al., 2023). However, the accuracy of KIN was not gen-
erally	much	superior	to	that	of	READ.	We	also	note	that	we	failed	
to run KIN on 1 K SNP datasets (due to sporadic errors likely due to 
convergence issues) and on one dataset that included inbreeding.

Marsh and colleagues (Marsh et al., 2023) recently tested the 
performance	 of	 kinship	 estimation	 software,	 including	 READ,	
NgsRelate,	 and	 lcMLkin	 (as	 well	 as	 TKGWV2	 and	 PMR	 calcula-
tion), and using real high- coverage ancient human genomes from 
three	 different	 publications.	 Assuming	 the	 relatedness	 degree	
identified by the tools on the original high- coverage genomes as 
ground truth, they studied kinship estimates using downsampled 
versions of the same genomes (0.02×–2.1×). Interestingly, the au-
thors found that the performance of genotype likelihood- based 
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methods (NgsRelate and lcMLkin) dropped starkly as the false neg-
ative	rate	increased.	In	contrast,	the	performances	by	READ,	PMR,	
and	TKGWV2	were	relatively	robust	to	low	coverages.	The	reason	
for NgsRelate and lcMLkin performance being compromised in the 
Marsh et al. study might be sensitivity to noise in population allele 
frequencies.

Overall, these results suggest no single tool may be universally 
superior in estimating kinship levels with low- coverage genomes. 
Using	multiple	tools	in	parallel	and	interpreting	the	results	in	light	of	
the superiorities and weaknesses of each tool and the particularities 
of	each	dataset	(e.g.	knowledge	of	allele	frequencies,	genetic	struc-
ture within the sample, and the possibility of inbreeding) may be the 
most prudent and confident approach. Meanwhile, both the archae-
ogenomics community and wildlife geneticists may continue seeking 
novel and more powerful methods, such as combining the two alter-
native	normalization	approaches	(population	allele	frequencies	and	
the median mismatch in a sample) and using haplotype information 
(Ringbauer et al., 2024) to calculate more robust kinship coefficients.
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